
P
E

K
I

N

G
U N I V E

R
S

I
T

Y

1 8 9 8

本科生毕业论文

题目： ADMM-Net: An Algorithm

Unrolling Approach For

Network Resource Allocation

姓 名： 谢中林

学 号： 1700016908

院 系： 数学科学学院

专 业： 信息与计算科学

指导教师： 文再文

二〇二一年六月

版权声明

任何收存和保管本论文各种版本的单位和个人，未经本论文作者同意，不得将本

论文转借他人，亦不得随意复制、抄录、拍照或以任何方式传播。否则一旦引起有碍

作者著作权之问题，将可能承担法律责任。

摘要

摘要

网络资源分配是一个极为重要的问题.一种常用的建模方法是将其抽象为满足网络带宽限制下

的效用函数最大化 (NUM)问题,这一方法简单有效,且其原始-对偶算法容易分布式实现.但在广域

网中,各数据流的可行路径往往不止一条,各自的需求也不一致,此时需要发展新的框架来重新分配

网络的资源.在保证大带宽与低延时的需求被满足的情况下,网络中各线路的负载应尽可能均衡.为

了满足及时性的要求,应当发展快速求解新模型的方法.本文的主要工作可以归纳为:

研究了 NUM问题的背景,在此基础上提出了一个同时提高分配的公平性并降低延时的多目标

优化模型 MOBAC. 这是一个非凸且非光滑的问题, 利用线性化的 ADMM 给出了求解算法. 调研了

基于学习的优化范式,它提供了加速传统算法的途径.利用算法展开这一技术,构造了两种基于线性

化 ADMM的 ADMM-Net,并极大地加速了收敛过程.

关键词：网络效用最大化，交替方向乘子法，基于学习的优化范式，算法展开

I

北京大学本科生毕业论文

II

ABSTRACT

ADMM-Net: An Algorithm Unrolling Approach For Network Resource

Allocation

Zhonglin Xie (Computational Mathematics)

Directed by Zaiwen Wen

ABSTRACT

Network resource allocation is an extremely important problem. A commonly used modeling

method is to abstract it as a utility function maximization (NUM) problem under the network

bandwidth limit. This method is simple and effective, and its primitive-dual algorithm is easy

Distributed implementation. However, in a wide area network, there is often more than one

feasible path for each data stream, and their respective needs are not consistent. At this time,

a new framework needs to be developed to redistribute network resources. The need to ensure

large bandwidth and low latency are If it is satisfied, a load of each line in the network should

be as balanced as possible. To meet the requirements of timeliness, a method of quickly solving

the new model should be developed. The main work of this paper can be summarized as:

The background of the NUM problem is studied, and on this basis, a multi-objective

optimization model MOBAC that improves the fairness of distribution and reduces the delay at

the same time is proposed. This is a non-convex and non-smooth problem, and the linearized

ADMM is used to give Solving algorithm. Learn to optimize is investigated, which provides a

way to speed up traditional algorithms. Using the algorithm rolling, two types of ADMM-Net

based on linearized ADMM are constructed, and the convergence process is greatly accelerated.

KEY WORDS: Network Utility Maximization, ADMM, Learn to Optimize, Algorithm Un-

rolling

III

北京大学本科生毕业论文

IV

目录

目录

第一章 Introduction 1
1.1 Background and Motivation . 1

1.2 Organization . 1

第二章 Linearized ADMM for Network Resource Allocation 3
2.1 Model Settings . 3

2.2 Network Utility Maximization (NUM) . 4

2.3 Multi-objective Bandwidth Allocation with Path Cardinality Constraints (MOBAC) 5

2.4 Linearized ADMM for Network Resource Allocation 5

2.4.1 Linearized ADMM . 5

2.4.2 Linearized ADMM for NUM . 7

2.5 Linearized ADMM for MOBAC . 9

第三章 ADMM-Net for Network Resource Allocation 11
3.1 Learn to Optimize (L2O) . 11

3.1.1 Model-free . 12

3.1.2 Plug-and-play (PnP) . 13

3.1.3 Algorithm Unrolling . 13

3.2 ADMM-Net for Network Resource Allocation 18

3.2.1 Training Strategy . 22

第四章 Numerical Experiment 23
4.1 Data set Descriptions . 23

4.1.1 Parameters Setting . 24

4.1.2 Performance Comparison . 25

第五章 Conclusions 27

参考文献 29

致谢 33

北京大学学位论文原创性声明和使用授权说明 35

V

北京大学本科生毕业论文

VI

第一章 Introduction

第一章 Introduction

1.1 Background and Motivation

In wide area networks (WANs), the resource is shared among different various applica-

tions. Such as high-denition video applications[1], online gaming[2], and video conferencing[3].

Some of them require low latency, and some of them require high throughput. It is challenging

to satisfy their demands at the same time. There are several reasons. First, the network resource

is limited but the demands are extreme. Second, the number of available paths is quite different

from the demands. A desired solution should cover all of them, such as single-path routing or

sparse routing.

Network utility maximization (NUM) is a popular framework for network resource alloca-

tion. But the objective function in NUM usually concerns only one measurement performance,

we want to build a new framework to meet the various requirements of the applications. This

framework leads to a non-smooth non-convex optimization problem, which is quite hard to

solve. Fortunately, by introducing an auxiliary variable, the linearized ADMM (LADMM), an

algorithm of growing attention, is well suited to solve it. However, LADMM-based algorithm

requires many iterations to derive the solution. We need to accelerate the it.

Learn to optimize (L2O) gives a promising increase of the numerical performance. We

use one of the L2O paradigm named algorithm unrolling to accelerate the convergence speed

of LADMM-based algorithm. The numerical experiments indicates the success of the rolled

algorithm.

1.2 Organization

In chapter二, we give a detailed description of the system model. Then, we propose two

frameworks to model the network resource problem. After that, we give a brief introduction

of ADMM. The linearized ADMM for two frameworks are derived based on a specific utility

function, which meets the demand of various applications.

In chapter 三, we introduce the learn to optimize (L2O). It includes three paradigms:

model-free, Plug-and-Play (PnP), and algorithm unrolling, while the first one is more like a

neural network and the others maintain the architecture of classical iterations. Based on these

works, we propose the ADMM-Net for network resource allocation. Besides, the backward of

1

北京大学本科生毕业论文

ADMM-Net is not trivial even with autograd. We introduce the Moreau envelope to overcome

it. This trick is also valid for other ADMM-based networks.

In chapter 四, we compare the different algorithms in various performance measure-

ments. ADMM-Net shows its advantage by reducing the inference cost and give a high-quality

approximation of the ground-truth solution.

We conclude the paper in 五. Some reflections on the algorithm unrolling are given.

Besides, we discuss the future directions of our work.

2

第二章 Linearized ADMM for Network Resource Allocation

第二章 Linearized ADMM for Network Resource Allocation

In this section, we describe the general network resource allocation problem, then give a

popular framework named network utility maximization (NUM). Based on NUM, we propose

a framework for multi-objective (e.g., utility, load balancing) allocation and path selection

problem. Finally, we utilize the separable structure of these frameworks and derive the

iterative algorithm based on linearized ADMM.

2.1 Model Settings

We consider 𝐾 flows indexed by 𝑘 (𝑘 = 1, 2, · · · , 𝐾) which are needed to be delivered

from source nodes to destination nodes. The size of the 𝑘-th flow is 𝑠𝑘 (𝑠𝑘 > 0,∀𝑘). We denote

the overall source sizes vector as 𝒔 = (𝑠1, 𝑠2, · · · , 𝑠𝐾)⊤. There are 𝐿 uni-directional links

indexed by 𝑙 (𝑙 = 1, 2, · · · , 𝐿) in the network. The capacity of the 𝑙-th link is 𝑐𝑙 (𝑐𝑙 > 0,∀𝑙).
We also denote the overall network capacity as a vector 𝒄 = (𝑐1, 𝑐2, · · · , 𝑐𝐿)⊤.

For the 𝑘-th flow, there is an affiliated source-destination pair and 𝑃𝑘 available paths

indexed by 𝑗 (𝑗 = 1, 2, · · · , 𝑃𝑘 ,∀𝑘). 𝒙𝑘 = (𝑥𝑘,1, 𝑥𝑘,2, · · · , 𝑥𝑘,𝑃𝑘)⊤ (𝑥𝑘, 𝑗 ≥ 0,∀𝑘, 𝑗) is the

resource allocation vector of the 𝑘-th flow, where 𝑥𝑘, 𝑗 is the resource allocated at the 𝑗-th path

for the 𝑘-th flow. It is worth mentioning that the path with 0 resource allocated is not selected.

As we mentioned in 一, the number of available paths is constrained by ∥𝒙𝑘 ∥0 ≤ 𝑤𝑘 . We

denote the overall network resource allocation vector as 𝒙 = (𝒙⊤1 , 𝒙⊤2 , · · · , 𝒙⊤𝐾)⊤.

The overall available paths information is represented by a routing matrix. For the 𝑘-th

flow, the routing matrix

𝑹𝑘 =

©­­­­­­«
𝑅𝑘1,1 𝑅𝑘1,2 · · · 𝑅𝑘1,𝑃𝑘
𝑅𝑘2,1 𝑅𝑘2,2 · · · 𝑅𝑘2,𝑃𝑘
...

...
. . .

...

𝑅𝑘𝐿,1 𝑅𝑘𝐿,2 · · · 𝑅𝑘𝐿,𝑃𝑘

ª®®®®®®¬
,

where 𝑅𝑘𝑖, 𝑗 ∈ {0, 1}. 𝑅𝑘𝑖, 𝑗 = 1 means the path 𝑗 of the 𝑘-th flow passes the 𝑙-th link and vice

versa. We define the overall network routing matrix as

𝑹 = (𝑹1, 𝑹2, · · · , 𝑹𝐾), where 𝑹 ∈ {0, 1}𝐿×𝑃, 𝑃 =
𝐾∑
𝑘=1

𝑃𝑘 .

Fig. 2.1 gives an example of a small network with five links and two flows (black and red).

3

北京大学本科生毕业论文

N

S1

D

S2

1

24

𝑥!,#
3

𝑥#,#

𝑥#,#

𝑥#,!

𝑥!,#

𝑥!,!

5

图 2.1 An illustrative example network with ve links and two users. The rst user (red line),
whose source node is 𝑆1 and destination node is 𝐷, has rate 𝑥1,1 and 𝑥1,2 on its two paths. The
second user (black line), whose source node is 𝑆2 and destination node is 𝐷, has rate 𝑥2,1 and
𝑥2,2 on its two paths. The numbers next to the lines represent the link indices.

Each flow has two available paths (solid line and dashed line) and the corresponding routing

matrices for the two flows are given by

𝑹1 =

©­­­­­­­­­«

1 0

1 0

0 1

0 0

0 0

ª®®®®®®®®®¬
, 𝑹2 =

©­­­­­­­­­«

0 0

0 0

1 0

0 1

1 0

ª®®®®®®®®®¬
.

In general, since each path only passes a small portion of all links over the entire network, 𝑹

is actually very sparse.

2.2 Network Utility Maximization (NUM)

In the 1997 and 1998, the seminal papers[4, 5] proposed an innovative framework for

resource allocation. They reduce the resource allocation problem to an optimization problem:

min
𝒙

−
𝐾∑
𝑘=1

𝑈𝑘 (∥𝒙𝑘 ∥1)

s.t. 𝑹𝒙 ≤ 𝒄

𝒙 ≥ 0

∥𝒙𝑘 ∥0 ≤ 𝑤𝑘 ,∀𝑘,

(2.1)

4

第二章 Linearized ADMM for Network Resource Allocation

where 𝑈𝑘 (·) is the utility function of the 𝑘-th flow. Since 𝑥𝑘, 𝑗 ≥ 0,∀𝑘, 𝑗 , we have ∥𝒙𝑘 ∥1 =∑𝑃𝑘
𝑗=1 𝑥𝑘, 𝑗 . Utility functions may be non-decreasing and may depend on delay (𝑠𝑘

∥𝒙𝑘 ∥1), fairness

(log(∥𝒙𝑘 ∥1)), etc.

2.3 Multi-objective Bandwidth Allocation with Path Cardinality Constraints

(MOBAC)

To avoid the congestion, it is important to balance the load of different links in the network.

Thus, we add the link utilization rate term 𝑹 [𝑙]𝒙
𝑐𝑙

to measure the network load, where 𝑹[𝑙] is

the 𝑙-th row of the routing matrix 𝑹. We want to minimize the link load in the worst case.

Mathematically speaking, we consider the following problem

min
𝒙

𝐾∑
𝑘=1

−𝑈𝑘 (∥𝒙𝑘 ∥1) + 𝛼max
𝑙

𝑹[𝑙]𝒙
𝑐𝑙

s.t. 𝑹𝒙 ≤ 𝒄

∥𝒙𝑘 ∥0 ≤ 𝑤𝑘 , ∀ 𝑘

𝒙 ≥ 0,

(2.2)

where 𝛼, 𝛽 is the predefined parameters to balance the different term.

2.4 Linearized ADMM for Network Resource Allocation

In this section, we first give a brief introduction to the alternating direction method of

multipliers (ADMM). Then, we derive the linearized ADMM for NUM and MOBAC given an

utility function of the following form:

𝑈𝑘 (𝒙𝑘) = 𝛽 log(∥𝒙𝑘 ∥1) −
𝑠𝑘

𝐾 ∥𝒙𝑘 ∥1
. (2.3)

2.4.1 Linearized ADMM

The alternating direction method of multipliers[6] (ADMM) is a variable splitting algo-

rithm of growing popularity due to both simplicity and efficiency. ADMM solves the problem

in the following form:
min 𝑓 (𝑥) + 𝑔(𝑧)

s.t. 𝐴𝑥 + 𝐵𝑧 = 𝑐,
(2.4)

5

北京大学本科生毕业论文

where 𝑥 ∈ R𝑛, 𝑧 ∈ R𝑚, 𝐴 is a 𝑝 × 𝑛 matrix, 𝐵 is a 𝑝 × 𝑚 matrix. Given the penalty parameter

𝜌, the augmented Lagrangian function of the problem (2.4) is

𝐿𝜌 (𝑥, 𝑧, 𝑦) = 𝑓 (𝑥) + 𝑔(𝑧) − 𝑦⊤(𝐴𝑥 + 𝐵𝑧 − 𝑐) + 𝜌
2
∥𝐴𝑥 + 𝐵𝑧 − 𝑐∥22,

where 𝑦 is the Lagrangian multiplier vector of the constrain 𝐴𝑥 + 𝐵𝑧 = 𝑐. ADMM recursively

performs the iterations:
𝑥𝑘+1 := argmin

𝑥
𝐿𝜌

(
𝑥, 𝑧𝑘 , 𝑦𝑘

)
𝑧𝑘+1 := argmin

𝑧
𝐿𝜌

(
𝑥𝑘+1, 𝑧, 𝑦𝑘

)
𝑦𝑘+1 := 𝑦𝑘 + 𝜌

(
𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑐

)
.

However, the subproblems in above iteration may have no explicit solutions. Many variants

of the ADMM have been developed to address this issue. One of them, named linearized

ADMM, transforms the 𝑥 subproblem to

𝑥𝑘+1 := argmin
𝑥
(∇𝑥𝐿𝜌

(
𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘

)⊤ (𝑥 − 𝑥𝑘) + 1
𝜂𝑘
∥𝑥 − 𝑥𝑘 ∥22). (2.5)

Actually, the solution of (2.5) equals to performing one step gradient descent to the original

subproblem with stepsize 𝜂𝑘 . Linearized ADMM fails when 𝑓 (𝑥) is non-differentiable. We

can utilize the linearization process only in the quadratic term ∥𝐴𝑥 + 𝐵𝑧 − 𝑐∥ and optimize

following problem:

𝑥𝑘+1 := argmin
𝑥

(
(𝜌𝐴⊤(𝐴𝑥𝑘 + 𝐵𝑧𝑘 − 𝑐 − 𝑦

𝑘

𝜌
))⊤(𝑥 − 𝑥𝑘) + 𝑓 (𝑥) + 1

𝜂𝑘
∥𝑥 − 𝑥𝑘 ∥22

)
.

It is worth mentioning that above problem is separable when 𝑓 (𝑥) owns the separable structure,

which means we can solve the problem by component. This property may simplify the problem

significantly.

6

第二章 Linearized ADMM for Network Resource Allocation

2.4.2 Linearized ADMM for NUM

Introducing the auxiliary variable 𝒚 = 𝑹𝒙, problem (2.1) is converted to an equivalent

form:

min
𝒙,𝒚

−
𝐾∑
𝑘=1

𝑈𝑘 (∥𝒙𝑘 ∥1)

s.t. 𝒚 = 𝑹𝒙

𝒙 ≥ 0

𝒚 ≤ 𝒄

∥𝒙𝑘 ∥0 ≤ 𝑤𝑘 ,∀𝑘.

(2.6)

The augmented Lagrangian function of above problem is

𝐿𝜌 (𝒙, 𝒚; 𝒛) = −
𝐾∑
𝑘=1

𝑈𝑘 (∥𝒙𝑘 ∥1) + 𝒛⊤(𝒚 − 𝑹𝒙) + 𝜌
2
∥𝒚 − 𝑹𝒙∥22, (2.7)

where 𝒛 is a Lagrangian multiplier vector associated with the constraint 𝒚 = 𝑹𝒙 in (2.6), and

𝜌 > 0 is a penalty parameter. The ADMM for problem in (2.6) is derived by alternatively

minimizing 𝐿𝜌 in (2.7) with respect to 𝒙 and 𝒚 with the other variables fixed. Specifically, the

iterative steps are given by

𝒙 𝑗 = arg min
𝒙∈X

𝐿𝜌 (𝒙, 𝒚 𝑗−1; 𝒛 𝑗−1)

= arg min
𝒙∈X

−
𝐾∑
𝑘=1

𝑈𝑘 (∥𝒙𝑘 ∥1) +
𝜌

2
∥𝒚 𝑗−1 − 𝑹𝒙 + 𝒛 𝑗−1

𝜌
∥2, (2.8)

𝒚 𝑗 = arg min
𝒚≤𝒄

𝐿𝜌 (𝒙 𝑗 , 𝒚; 𝒛 𝑗−1)

= arg min
𝒚≤𝒄

𝜌

2
∥𝒚 − 𝑹𝒙 𝑗 + 𝒛 𝑗−1

𝜌
∥2, (2.9)

where X = {𝒙 | 𝒙 ≥ 0, ∥𝒙𝑘 ∥0 ≤ 𝑤𝑘 ,∀𝑘}, 𝑗 is the step index, 𝒙 𝑗 = (𝒙 𝑗1; 𝒙
𝑗
2; · · · ; 𝒙

𝑗
𝐾), and

𝒙 𝑗𝑘 = (𝒙
𝑗
𝑘,1, 𝒙

𝑗
𝑘,2, · · · , 𝒙

𝑗
𝑘,𝑃𝑘
)⊤, 𝑘 = 1, 2, · · · , 𝐾 . After the update steps of 𝒙 and 𝒚 as above, the

update of the multiplier 𝒛 is given by

𝒛 𝑗 = 𝒛 𝑗−1 + 𝜌(𝒚 𝑗 − 𝑹𝒙 𝑗). (2.10)

The 𝒙-update subproblem is hard to solve because different blocks of 𝒙 are coupled together.

To circumvent such an issue, we linearize the quadratic term in (2.7) at 𝒙 𝑗−1 and add a proximal

7

北京大学本科生毕业论文

term:

𝒙 𝑗 = arg min
𝒙∈X

−
𝐾∑
𝑘=1

𝑈𝑘 (∥𝒙𝑘 ∥1) − 𝜌⟨𝑹⊤(𝒚 𝑗−1 − 𝑹𝒙 𝑗−1 − 𝒛 𝑗−1

𝜌
), 𝒙 − 𝒙 𝑗−1⟩ + 𝜇

2
∥𝒙 − 𝒙 𝑗−1∥22

= arg min
𝒙∈X

−
𝐾∑
𝑘=1

𝑈𝑘 (∥𝒙𝑘 ∥1) +
𝜇

2
∥𝒙 − 𝒙 𝑗−1 − 𝜌

𝜇
𝑹⊤(𝒚 𝑗−1 − 𝑹𝒙 𝑗−1 − 𝒛 𝑗−1

𝜌
)∥22. (2.11)

Now, problem (2.11) can be separated for different sources. Specifically, for the 𝑘-th source,

the update of 𝒙𝑘 is given by

𝒙 𝑗𝑘 = arg min
𝒙𝑘 ∈X𝑘

−𝑈𝑘 (∥𝒙𝑘 ∥1) +
𝜇

2
∥𝒙𝑘 − 𝝂 𝑗−1

𝑘 ∥
2
2, (2.12)

where X𝑘 = {𝒙𝑘 | 𝒙𝑘 ≥ 0, ∥𝒙𝑘 ∥0 ≤ 𝑤𝑘}, 𝝂 𝑗−1 = 𝒙 𝑗−1 + 𝜌
𝜇
𝑹⊤(𝒚 𝑗−1 − 𝑹𝒙 𝑗−1 − 𝒛 𝑗−1

𝜌
). Without

loss of generality, suppose the elements of 𝝂 𝑗−1
𝑘 = (𝜈 𝑗−1

𝑘,1 , 𝜈
𝑗−1
𝑘,2 , · · · , 𝜈

𝑗−1
𝑘,𝑃𝑘
)⊤ are in descending

order. The solution of problem in (2.12) is given by

𝑥 𝑗𝑘,𝑖 = max(0, 𝜈 𝑗−1
𝑘,𝑖 + 𝜁𝑘), where 𝜇𝑖′𝜁𝑘 = 𝑈 ′𝑘 (

𝑖′∑
𝑖=1

max(0, 𝜈 𝑗−1
𝑘,𝑖 + 𝜁𝑘)),

𝑖′ is the maximal index such that 𝑈 ′𝑘 (
∑𝑖′

𝑖=1 max(0, 𝜈 𝑗−1
𝑘,𝑖 − 𝜈

𝑗−1
𝑘,𝑖′)) ≥ −𝜇𝜈

𝑗−1
𝑘,𝑖′ and 𝑖′ ≤ 𝑤𝑘 . For

details, one may refer to[7]. Invoking (2.3), 𝜁𝑘 can be found by solving

𝑟𝑘 −
𝛽

𝜇

1
𝑟𝑘
− 𝑠𝑘
𝜇𝐾

1
𝑟2
𝑘

=

∑𝑖′

𝑖=1 𝜈
𝑗−1
𝑘,𝑖

𝜇
(2.13)

where 𝑟𝑘 =
∑𝑖′

𝑖=1(𝜈
𝑗−1
𝑘,𝑖 + 𝜁𝑘). Since 𝛽

𝜇
> 0, 𝑠𝑘

𝜇𝐾
> 0, equation (2.13) has exactly one positive

root that can be found by Cardano’s formula[8], see Fig. 2.2. We denote the mapping between

0.5 1.0 1.5 2.0 2.5 3.0

−20

−15

−10

−5

0

x− b

x
− c

x2
, b, c > 0

any real number

图 2.2 An illustration of finding 𝜁𝑘 .

8

第二章 Linearized ADMM for Network Resource Allocation

𝜈 𝑗−1
𝑘 and 𝑥 𝑗𝑘 as

𝑥 𝑗𝑘 = C𝑘 (𝜈
𝑗−1
𝑘). (2.14)

The update of 𝒚 writes:

𝒚 𝑗 = arg min
𝒚≤𝒄

𝜌

2
∥𝒚 − 𝑹𝒙 𝑗 ∥22 − (𝒛 𝑗−1)⊤(𝒚 − 𝑹𝒙 𝑗). (2.15)

The solution of (2.15) is

𝒚 𝑗 = −PR𝐿+ (𝒄 − 𝑹𝒙 𝑗 − 𝒛 𝑗−1

𝜌
) + 𝒄,

where PR𝐿+ is the Euclidean projection on R𝐿+ = {(𝑥1, 𝑥2, · · · , 𝑥𝐿)⊤ | 𝑥𝑖 ⩾ 0, 𝑖 = 1, 2, · · · , 𝐿}.
Using the above results, we get the Linearized ADMM for NUM:



𝒙 𝑗𝑘 ← C𝑘 (𝝂
𝑗−1
𝑘), 𝑘 = 1, . . . , 𝐾,

𝒚 𝑗 ← −PR𝐿+ (𝒄 − 𝑹𝒙 𝑗 − 𝒛 𝑗−1

𝜌
) + 𝒄,

𝒛 𝑗 ← 𝒛 𝑗−1 − 𝛾𝜌(𝒚 𝑗 − 𝑹𝒙 𝑗),

𝝂 𝑗 ← 𝒙 𝑗 + 𝜌
𝜇
𝑹⊤(𝒚 𝑗 − 𝑹𝒙 𝑗 − 𝒛 𝑗

𝜌
),

(2.16a)

(2.16b)

(2.16c)

(2.16d)

where 𝛾 is the update coefficient of Lagrangian multiplier.

2.5 Linearized ADMM for MOBAC

We derive the linearized ADMM for MOBAC like the NUM. Introducing the auxiliary

variable 𝒚 = 𝑹𝒙, problem (2.2) equals to

min
𝒙

𝐾∑
𝑘=1

−𝑈𝑘 (∥𝒙𝑘 ∥1) + 𝛼max
𝑙

𝒚𝑙
𝑐𝑙

s.t. 𝒚 ≤ 𝑹𝒙

𝒚 ≤ 𝒄

∥𝒙𝑘 ∥0 ≤ 𝑤𝑘 , ∀ 𝑘

𝒙 ≥ 0,

(2.17)

The augmented Lagrangian function of above problem is

𝐿𝜌 (𝒙, 𝒚; 𝒛) = −
𝐾∑
𝑘=1

𝑈𝑘 (∥𝒙𝑘 ∥1) + 𝛼max
𝑙

𝒚𝑙
𝑐𝑙
+ 𝒛⊤(𝒚 − 𝑹𝒙) + 𝜌

2
∥𝒚 − 𝑹𝒙∥22, (2.18)

where 𝒛 is a Lagrangian multiplier vector associated with the constraint 𝒚 = 𝑹𝒙 in (2.6), and

𝜌 > 0 is a penalty parameter.

9

北京大学本科生毕业论文

The 𝒙-update of linearized ADMM for MOBAC is the same as NUM. We only consider

the 𝒚-update of linearized ADMM for MOBAC. It writes:

𝒚 𝑗+1 = arg min
𝒚∈Y

𝐿𝜌 (𝒙 𝑗+1, 𝒚; 𝒛 𝑗)

= arg min
𝒚∈Y

𝛼max
𝑙

𝑦𝑙
𝑐𝑙
+ 𝜌

2
∥𝒚 − 𝑹𝒙 𝑗+1 + 𝒛 𝑗

𝜌
∥2, (2.19)

where Y = {𝒚 | 0 ≤ 𝒚 ≤ 𝒄}. It is non-smooth and hard to obtain an explicit solution

of problem (2.19). Thus, we introduce a new variable 𝒚 = 𝑹𝒙 and consider the following

quadratic program:

min
𝑡 ,𝒚

𝜙(𝑡, 𝒚) = 𝛼𝑡 + 𝜌
2
∥𝒚 − 𝑹𝒙 𝑗+1 + 𝒛 𝑗/𝜌∥2

s.t. 𝒚 ≤ 𝑡𝒄

𝒚 ≥ 0

𝒚 ≤ 𝒄,

(2.20)

which is equivalent to problem (2.19). Define an auxiliary function

𝑦𝑙 (𝑡) =


𝜃 𝑗𝑙 , 𝑖 𝑓 0 ≤ 𝜃 𝑗𝑙 ≤ min(𝑐𝑙, 𝑡𝑐𝑙),
min(𝑐𝑙, 𝑡𝑐𝑙), 𝑖 𝑓 𝜃 𝑗𝑙 > min(𝑐𝑙, 𝑡𝑐𝑙),
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(2.21)

where 𝜽 𝑗 = 𝑹𝒙 𝑗+1 − 𝒛 𝑗/𝜌. Problem (2.20) is equivalent to

min
𝑡

Φ(𝑡) = 𝜙(𝑡, 𝒚(𝑡)) s.t. 0 ≤ 𝑡 ≤ 1, where 𝒚(𝑡) = (𝑦1(𝑡), · · · , 𝑦𝐿 (𝑡))⊤. (2.22)

Suppose 𝑡∗ is the optimal solution of problem (2.22). The solution of problem (2.20) is given

by 𝒚(𝑡∗). One may refer to[7] for detailed proof. Problem (2.21) can be tackled by optimization

methods based on function value (e.g. fminbnd in MATLAB).

10

第三章 ADMM-Net for Network Resource Allocation

第三章 ADMM-Net for Network Resource Allocation

Even though the linearized ADMM can solve problem (2.1) with simple iterations and

theoretical guarantee. In practice, it usually requires hundreds of iterations to converge,

which is not entirely satisfactory for real-time decision making even with certain acceleration

techniques[9]. In this section, we introduce a novel method named Algorithm unrolling to

overcome this difficulty.

3.1 Learn to Optimize (L2O)

In recent days, a research field named learn to optimize attracts much attention[10]. This

approach aims to automate the designation of optimization algorithms. We call an optimization

problem as optimizee and an optimization algorithm as optimizer. As illustrated in Fig. 3.1,

classical optimizers are designed for a wide range of problems with particular properties.

Learn to optimize leverages machine learning to improve the performance of optimizers for

similar optimizees. The paradigm of learn to optimize is shown in Fig. 3.2. We train a L2O

optimizer offline and test it online. There are three approaches to construct a L2O optimizer:

model-free, plug-and-play (PnP), and algorithm unrolling. Model-free methods construct a

L2O optimizer from a machine learning model directly. Plug-and-play methods utilize the

modular architecture of optimizers (e.g. ADMM) and substitute the module with a learnable

model. Algorithm unrolling methods only make some predefined parameters in classical

optimizer become learnable, which preserve the original architecture.

Selected
Optimizer

Online

Classical
Optimizers

New Optimizees

图 3.1 The framework of classical algorithm

11

北京大学本科生毕业论文

Learned
Optimizer

New Optmizees

Online

Learnable
Optimizer

 Update

Training
Optmizees

Training Dynamics

Update

Offline

图 3.2 The framework of learn to optimize

3.1.1 Model-free

Gradient-type algorithms share a common formulation[11]:

𝑥 (𝑖) ← 𝑥 (𝑖−1) + 𝜋(𝑓 , {𝑥 (0) , . . . , 𝑥 (𝑖−1)}), (3.1)

where 𝜋 is a functional of the objective function and past locations. In vanilla gradient descent

method, we choose:

𝜋(𝑓 , {𝑥 (0) , . . . , 𝑥 (𝑖−1)}) = −𝛾Δ 𝑓 (𝑥 (𝑖−1)),

where 𝛾 is the stepsize. In gradient descent method with momentum, we have:

𝜋(𝑓 , {𝑥 (0) , . . . , 𝑥 (𝑖−1)}) = −𝛾(
𝑖−1∑
𝑗=0

𝛼𝑖−1− 𝑗∇ 𝑓 (𝑥 (𝑗))),

where 𝛾 is the stepsize and 𝛼 is the decay coefficient. 𝜋 is actually a policy based on trajectory

and objective function value. Thus, we can model 𝜋 using reinforcement learning (RL). The

simulation results in simple examples show that this idea is quite powerful.

In[12], the authors demonstrate a method that converts the gradient descent algorithm into

long short term memory (LSTM) network, also gains much improvement. There are many

other examples of the model-free method[13][14][15]. They have a common framework and

show advantages in numerical performance. However, on the one hand, them are hard to get

theoretical results. On the other hand, most of them are based on gradient-type algorithm.

Many problems with objective functions that difficult to get gradient cannot be solved by these

methods, several iteration methods have been developed to solve such problems e.g. ADMM[6],

iterative shrinkage thresholding algorithm (ISTA) & fast iterative shrinkage thresholding al-

gorithm (FISTA)[16]. These methods find the minima of subproblems directly, do not need

to compute gradient, which makes the implementation of learning to optimize that described

above become hard.

12

第三章 ADMM-Net for Network Resource Allocation

3.1.2 Plug-and-play (PnP)

ADMM is popular for solving maximum a posteriori (MAP) inverse problems. Given the

measurement 𝑦 of the ground truth 𝑥, the MAP estimation is

𝑙 (𝑥, 𝑦) + 𝛽𝑠(𝑥),

where 𝑙 is the ’distance’ between 𝑥 and 𝑦, 𝑠 is the regularization term, 𝛽 is the regular coefficient.

MAP problem equals to

min
𝑥,𝑣

𝑙 (𝑥, 𝑦) + 𝛽𝑠(𝑣), s.t. 𝑥 = 𝑣.

ADMM for above problem consists of the iterations:

𝑥 𝑗+1 ← arg min
𝑥

𝑙 (𝑥, 𝑦) + 𝜆
2 ∥𝑥 − 𝑥 𝑗 ∥22

𝑣 𝑗+1 ← arg min
𝑣

𝛽𝑠(𝑣) + 𝜆
2 ∥𝑣 − 𝑣 𝑗 ∥22

𝑢 𝑗+1 ← 𝑢 𝑗 + (𝑥 𝑗 − 𝑣 𝑗).

Treating the 𝑣-update as a functional 𝐹 from 𝛽, 𝑠, 𝑣 𝑗 , 𝜆 to 𝑣 𝑗+1, we get a high-level viewpoint

of ADMM. In ADMM for image processing problems, the 𝑣-update may be viewed as the

denoising process. However, there are many existing ad-hoc denoisers, e.g. K-SVD, BM3D,

Total Variation (TV). We can substitute the 𝑣-update with aforementioned denoisers[17]. The

numerical result shows the success of this idea. The modified ADMM outperforms the original

ADMM.

The PnP method is not connected to the L2O until the recent work[18-20]. Instead of the

manually designed denoisers, they substitute the updates with trainable models. Since PnP

owns modular structure, convergence can be guaranteed under some conditions like bounded

denoisers[21], monotone operator and constrained Lipschitz constant[22], by using the proof

technique in ADMM. Since the learnable parts in PnP is small, the training cost of PnP is

usually lower than model-free methods.

3.1.3 Algorithm Unrolling

Iterative algorithms can be viewed as a recurrent neural networks (RNN) with no train-

able parameters. A natural idea is making the predefined parameters in iterative algorithms

trainable.

In the last decade, a novel technique called algorithm unrolling has been developed. In the

seminal paper[23], the authors, for the first time, propose the approach that unrolls an iterative

algorithm into a deep neural network. It achieved great success by fixing the computational

13

北京大学本科生毕业论文

complexity to a quite small size with an acceptable approximation solution. This technique

starts a different line of work in learn to optimize.

3.1.3.1 LISTA

Consider a sparse coding problem that is classical in source coding, signal recon-

struction, pattern recognition and feature selection. There is an unknown sparse vector

𝑥∗ = [𝑥∗1, · · · , 𝑥∗𝑀]⊤ ∈ R𝑀 . We have its noisy linear measurements:

𝑏 =
𝑀∑
𝑚=1

𝑑𝑚𝑥
∗
𝑚 + 𝜀 = 𝐷𝑥∗ + 𝜀,

where 𝑏 ∈ R𝑁 , 𝐷 = [𝑑1, · · · , 𝑑𝑀] ∈ R𝑁×𝑀 is the dictionary, and 𝜀 ∈ R𝑁 is additive Gaussian

white noise. This is an undetermined system with 𝑁 ≦ 𝑀 . The expensive inference algorithms

prohibits it real-time applications. A popular approach is least absolute shrinkage and selection

operator (LASSO):

min
𝑥

1
2
∥𝑏 − 𝐷𝑥∥22 + 𝜆∥𝑥∥1, where 𝑏 = 𝐷𝑥∗ + 𝜀.

Iterative shrinkage thresholding algorithm (ISTA) is a general solution for LASSO, it performs:

𝑥𝑘+1 = 𝜂𝜆/𝐿 (𝑥𝑘 +
1
𝐿
𝐷⊤(𝑏 − 𝐷𝑥𝑘)), 𝑘 = 0, 1, 2, . . . ,

where 𝜂𝜃 (𝑥) = sign(𝑥)max(0, |𝑥 | − 𝜃) and 𝐿 is usually taken as the largest eigenvalue of 𝐷⊤𝐷,

𝜆 is a hyper parameter. Let𝑊1 = 1
𝐿
𝐷⊤,𝑊2 = 𝐼 − 1

𝐿
𝐷⊤𝐷, 𝜃 = 1

𝐿
𝜆. ISTA can be written as

𝑥𝑘+1 = 𝜂𝜃 (𝑊1𝑏 +𝑊2𝑥
𝑘).

Note the ISTA can be recognized as a RNN with no learnable weights, see Fig. 3.3. We can

untie the weights in different steps and make them learnable:

𝑥𝑘+1 = 𝜂𝜃𝑘 (𝑊 𝑘
1 𝑏 +𝑊 𝑘

2 𝑥
𝑘), 𝑘 = 1, 2, · · · , 𝐾 − 1.

We call this model as learned ISTA (LISTA)[23], see Fig. 3.4. LISTA has the trainable weights

Θ = {𝑊 𝑘
1 ,𝑊

𝑘
2 , 𝜃

𝑘}𝐾𝑘=1. Invoking the origin of LISTA, we can make only 𝑊1 = 𝑊 = 1
𝐿
𝐷⊤

learnable and let 𝑊2 = 𝐼 − 𝑊𝐷. Since 𝑁 ≦ 𝑀 , this approach will reduce the memory

significantly:

𝑥𝑘+1 = 𝜂𝜃𝑘 (𝑥𝑘 +𝑊 𝑘 (𝑏 − 𝐷𝑥𝑘)), 𝑘 = 1, 2, · · · , 𝐾 − 1,

where the learnable parameters are Θ = {𝜃𝑘 ,𝑊 𝑘}𝐾𝑘=1. This variant of LISTA is named LISTA

with coupling weights (LISTA-CP). The necessary condition for the convergence of LISTA

14

第三章 ADMM-Net for Network Resource Allocation

图 3.3 RNN Structure of
ISTA 图 3.4 Unrolled Learned ISTA Network

表 3.1 Summary: variants of LISTA and the number of parameters to learn.

LISTA LISTA-CP TiLISTA ALISTA
𝑂

(
𝐾𝑀2 + 𝐾 + 𝐾𝑀𝑁

)
𝑂 (𝐾𝑁𝑀 + 𝐾) 𝑂 (𝑁𝑀 + 𝐾) 𝑂 (𝐾)

has been proved[24]:

𝜃𝑘 → 0, 𝑊 𝑘
2 − (𝐼 −𝑊 𝑘

1 𝐷) → 0, as 𝑘 →∞,

which provides the theoretical equivalence of LISTA and LISTA-CP. The further work[25]

proposes an analysis that reduces the size of learnable parameters. Based on the LISTA-CP,

we can tie the weights in different steps and result in tied LISTA (TiLISTA):

𝑥𝑘+1 = 𝜂𝜃𝑘 (𝑥𝑘 + 𝛾𝑘𝑊 (𝑏 − 𝐷𝑥𝑘)), 𝑘 = 1, 2, · · · , 𝐾 − 1

with learnable parameters Θ = {𝜃𝑘 , 𝛾𝑘}𝐾𝑘=1 ∪𝑊 . The 𝑊 actually aims to solve the following

problem[25]:

�̃�(𝐷) = inf
𝑊 ∈R𝑁×𝑀
𝑊 ⊤:,𝑖𝐷:,𝑖=1

{ max
𝑖≠ 𝑗

1≤𝑖, 𝑗≤𝑀

𝑊⊤:,𝑖𝐷 :, 𝑗}. (3.2)

This is a linear program with a piece-wise linear objective function and linear constraints.

Since it is feasible, and

0 ≤ �̃�(𝐷) ≤ max
𝑖≠ 𝑗

1≤𝑖, 𝑗≤𝑀

𝐷⊤𝑖 𝐷 𝑗 .

�̃� is bounded, there exists optimal solution. We denote the solution set of the problem (3.2)

as W(𝐷) =
{
𝑊 ∈ R𝑁×𝑀 : 𝑊 attains the infimum

}
. Substituting the 𝑊 in TiLISTA with a

solution �̃� ∈ W(𝐷), we get the analytic LISTA (ALISTA):

𝑥𝑘+1 = 𝜂𝜃𝑘 (𝑥𝑘 + 𝛾𝑘�̃� (𝑏 − 𝐷𝑥𝑘)), 𝑘 = 1, 2, · · · , 𝐾 − 1

with the only learnable parameters Θ = {𝛾𝑘 , 𝜃𝑘}𝐾𝑘=1. For each model, 𝑥𝐾 depends on Θ, 𝑏, 𝑥0.

Denote 𝑥𝐾 as 𝑥𝐾 (Θ, 𝑏, 𝑥0). Given the distribution of 𝑏, 𝑥∗, we train the model by solving the

15

北京大学本科生毕业论文

optimization problem:

min
Θ
E(𝑏,𝑥∗) ∥𝑥𝐾 (Θ, 𝑏, 𝑥0) − 𝑥∗∥22.

Stochastic gradient descent (SGD) can be applied to solve this minimization problem. The

gradient w.r.t. 𝑥𝐾 onΘ are obtained with the chain rule. The difficulties of training RNNs make

us adopt layer-wise training in practical[26]. Theoretical linear convergence has been proved

both for the models. Numerical experiments reveal the fact that the reduction of learnable

parameters (see Tab. 3.1) would not influent the convergence rate of the models, see Fig. 3.5.

图 3.5 NMSE = 10 log10 (
E∥𝑥𝐾 (Θ)−𝑥∗ ∥2
E∥𝑥∗ ∥2)

3.1.3.2 ADMM-Net

Inspired by the success of LISTA,[27] first applies the unrolling technique in ADMM in

a mixed sparse model. The result indicates that unrolling technique is compatible. Since

ADMM is widely adopted in image processing. The researchers have proposed many versions

of ADMM-based deep unrolling algorithm.

Consider a compressive sensing magnetic resonance imaging (CS-MRI) problem. As-

sume 𝑥 ∈ C𝑁 is an MRI image to be reconstructed, 𝑦 ∈ C𝑁 ′ (𝑁 ′ < 𝑁) is the under-sampled

data. The reconstructed image can be estimated by solving:

𝑥 = arg min
𝑥
{1
2
∥𝐴𝑥 − 𝑦∥22 +

𝐿∑
𝑙=1

𝜆𝑙𝑔(𝐷𝑙𝑥)},

where 𝐴 = 𝑃𝐹 ∈ R𝑁 ′×𝑁 is a measurement matrix, 𝑃 ∈ R𝑁 ′×𝑁 is a under-sampling matrix,

and 𝐹 is a Fourier transform. 𝐷𝑙 denotes a transform matrix for a filtering operation. 𝑔(·)
is a regularization function. 𝜆𝑙 is a regularization parameter. Introduce auxiliary variables

16

第三章 ADMM-Net for Network Resource Allocation

𝑧 = {𝑧1, 𝑧2, · · · , 𝑧𝐿}, above problem equals to:

min
𝑥,𝑧

1
2
∥𝐴𝑥 − 𝑦∥22 +

𝐿∑
𝑙=1

𝜆𝑙𝑔(𝑧𝑙) s.t. 𝑧𝑙 = 𝐷𝑙𝑥, 𝑙 = 1, 2, · · · , 𝐿.

The augmented Lagrangian function is:

𝐿𝜌 (𝑥, 𝑧, 𝛼) =
1
2
∥𝐴𝑥 − 𝑦∥22 +

𝐿∑
𝑙=1

𝜆𝑙𝑔(𝑧𝑙) −
𝐿∑
𝑙=1

⟨𝛼𝑙, 𝑧𝑙 − 𝐷𝑙𝑥⟩

+
𝐿∑
𝑙=1

𝜌𝑙
2
∥𝑧𝑙 − 𝐷𝑙𝑥∥22,

where 𝛼 = {𝛼𝑙} are Lagrangian multipliers and 𝜌 = {𝜌𝑙} are penalty parameters.

We alternatively optimizes {𝑥, 𝑧, 𝛼} and substitute 𝐴 = 𝑃𝐹, 𝛽𝑙 =
𝛼𝑙
𝜌𝑙

:
𝑥𝑛 = 𝐹⊤𝐺−1 [𝑃⊤𝑦 +

𝐿∑
𝑙=1

𝜌𝑙𝐹𝐷
⊤
𝑙 (𝑧𝑛−1

𝑙 − 𝛽𝑛−1
𝑙)]

𝑧𝑛𝑙 = 𝑆(𝐷𝑙𝑥𝑛 + 𝛽𝑛−1
𝑙 ;𝜆𝑙/𝜌𝑙)

𝛽𝑛𝑙 = 𝛽
𝑛−1
𝑙 + 𝜂𝑙 (𝐷𝑙𝑥𝑛 − 𝑧𝑛𝑙)

where 𝐺 = 𝑃⊤𝑃 + ∑𝐿
𝑙=1 𝜌𝑙𝐹𝐷

⊤
𝑙 𝐷𝑙𝐹

⊤, 𝑆(·) is a nonlinear shrinkage function, 𝜂𝑙 is an update

rate. But ADMM needs to run dozens of iterations to get a satisfactory result. It is also

challenging to choose the transform 𝐷𝑙 and shrinkage function 𝑆(·) for general regularization

function 𝑔(·). For different data, tuning the parameters 𝜌𝑙 and 𝜂𝑙 is not trivial. The data flow

of ADMM (Fig. 3.6) encourages us to unroll the ADMM and use machine learning to address

these issues. Due to the similarity of LISTA and ADMM-Net, we omit the unrolling details of

stage n

Sampling data
in k-space

Reconstructed
MR image

(Ns+1)

X
(1)
X

(n−1)
X

(n−1)
C

(n)
X

(n)
C

(n−1)
M

(n)

M
(n+1)
M

(n−1)
S

(n)
S X

(n+1)

S
(n+1)

C
(n+1)

图 3.6 The data flow graph for the ADMM. This graph consists of four types of nodes:
reconstruction (X), convolution (C), non-linear transform (Z), and multiplier update (M).

ADMM-Net here. The deep ADMM-Net for compressive sensing[28] outperforms the existing

methods, this work shows the potential of deep unrolling ADMM, the further work[29] exploits

the architecture used to approximate additive layer and gains better performance. The work

in[30] present an enlightenment idea that comes from statistical perspective, using a function

to composite the terms in proximal term of ISTA. Based on this idea, the authors successfully

17

北京大学本科生毕业论文

establish a more general network compare to[29]. It is worth mentioning that the proposed

network in[30] outperforms[29] in compressive sensing tasks with a much simpler architecture,

which shows the power of the idea. Since linearization tricks often be adopted in ADMM, the

deep unrolling version of linearized ADMM (D-LADMM)[31] extends the area of unrolling

technique and provides the convergence proof using variational inequality[32].

There are numerous papers aim to exploit the potential of deep unrolling, for more results

in image and signal processing, one can refer to[33], this paper reviews the previous notable work

and explains the three advantages of deep unrolling—fast, interpretability and generalizability.

For more results in communication systems, one may refer to[34] and[35],[35] represents a type

of work that apply deep learning (DL) in Weighted Minimize Mean Square Error (WMMSE),

however, this work has no guarantee for convergence.

3.2 ADMM-Net for Network Resource Allocation

In this section, we describe the details of unrolling the ADMM for NUM, say equations

(2.16), into a deep neural network (DNN). Then, we use the Moreau envelope[36] to derive the

backward of 𝒚-update in MOBAC and give the ADMM-Net for MOBAC. We first realize the

Recurrent Neural Network (RNN) structure of ADMM, then unroll the RNN to get ADMM-

Net.

RNN structure of ADMM ADMM is an iteration algorithm. As shown in the Fig. 3.7,

its data flow graph has a recurrent structure. From the perspective of Deep Learning (DL),

x0 y0

z0

ν0 x1 y1

z1

ν1 x2 y2

z2

ν2 x3 y3

z3

ν3 x4

图 3.7 Data flow graph of ADMM, where 𝒙0, 𝒚0, 𝒛0 are fixed initial values, 𝒔 is the input.

ADMM is a RNN with non-trainable weights. A natural question that arises here is can we

parameterize some constants in (2.16) to get trainable weights?

ADMM-Net1 To get a DNN with trainable weights, we parameterize several matrices in

(2.16) to make them learnable, then change the corresponding operations to make them com-

patible with the weights. Finally, we terminate the process after 𝑇-th update.

18

第三章 ADMM-Net for Network Resource Allocation

We use⊙, ⊘ to represent element wise multiplication and division, respectively. Prewisely,

at 𝑗-th update, we substitute the first 𝑹 in (2.16d) with weight 𝑾 𝑗 . To gain more freedom, we

substitute the scalar 1
𝜌

with 𝜎 𝑗 , where 𝜎 is a 𝑛-dimension vector. Naturally, we apply element

wise operations to replace their corresponding scalar version. We introduce the 𝑛-dimension

threshold vector 𝒕 𝑗 and add it to the variable inside proximal mapping of (2.16b) to adjust the

threshold of proximal mapping. Adopting the Cardano’s formula in (2.16), we get the first

version of deep unrolling ADMM:



𝒙 𝑗𝑘 ← C𝑘 (𝝂
𝑗−1
𝑘), 𝑘 = 1, . . . , 𝐾,

𝒚 𝑗 ← −PR𝐿+ (𝑹𝒙
𝑗 − 𝜎 ⊙ 𝒛 𝑗−1 + 𝒕 𝑗) + 𝒄,

𝒛 𝑗 ← 𝒛 𝑗−1 − 𝛾(𝒚 𝑗 − 𝑹𝒙 𝑗) ⊘ 𝜎 𝑗 ,

𝝂 𝑗 ← 𝒙 𝑗 + 𝜌
𝜇
(𝑾 𝑗)⊤(𝒚 𝑗 − 𝑹𝒙 𝑗 − 𝜎 ⊙ 𝒛 𝑗),

(3.3a)

(3.3b)

(3.3c)

(3.3d)

where Θ = {𝑾 𝑗 , 𝜎 𝑗 , 𝒕 𝑗}𝑇𝑗=1 are the trainable weights. We use 𝑥 𝑗 (𝒔; {𝑾 𝜏 , 𝜎𝜏 , 𝒕𝜏} 𝑗−1
𝜏=1) to denote

the output of ADMM-Net1 at 𝑗-th layer. A typical layer of ADMM-Net1 is shown in Fig. 3.8.

zj−1

νj−1 xjk ← C(ν
j−1
k),∀k

yj ← −PRL
+
(Rxj − σ � zj−1 + tj) + c

zj ← zj−1 − γ(yj −Rxj)� σj

νj ← xj + ρ
µ (W

j)>(yj −Rxj − σ � zj)

图 3.8 A typical layer of ADMM-Net.

ADMM-Net2 The Cardano’s formula in (2.14) is actually a special case of proximal mapping.

Consider the general cubic equation

𝑥3 + 𝑎𝑥2 − 𝑏𝑥 − 𝑐 = 0⇔ 𝑥 − 𝑏
𝑥
− 𝑐

𝑥2 = −𝑎, (3.4)

where 𝑏, 𝑐 > 0. Fixing 𝑏, 𝑐, denote the only positive root of (3.4) as 𝑟 (𝑎). As illustrated in

Fig. 2.2, we have

𝑟 (𝑎) → 0, as 𝑎 → +∞,

𝑟 (𝑎) → −𝑎, as 𝑎 → −∞.

19

北京大学本科生毕业论文

This fact inspires us to use a single branch of the rotated hyperbola to approximate it. Since

the asymptotes are fixed, we have the fixed eccentricity. Notice that our aim is approximating

C𝑘 in finite interval, we use three parameters to control this process, the first one is the shape

parameter 𝜆𝑘 , others are translation parameters 𝑚𝑘 , 𝑛𝑘 corresponding to 𝑥 axis and 𝑦 axis,

respectively.

[(𝑎 + 𝑚𝑘) + (𝑦 + 𝑛𝑘)] (𝑦 + 𝑛𝑘) = 𝜆𝑘 ⇒ 𝑦 =

√
(𝑎 + 𝑚𝑘)2

4
+ 𝜆𝑘 −

𝑎 + 𝑚𝑘

2
− 𝑛𝑘 . (3.5)

The numerical result in Fig. 3.9 indicates that our method is reasonable.

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

a

0

200

400

600

800

1000

1200

V
a

lu
e

Cardano's formula
Our approximation

-1000 -800 -600 -400 -200 0 200 400 600 800 1000

a

-4

-3

-2

-1

0

1

2

3

4

D
iff

e
re

n
ce

Difference between Cardano's formula and our approxiamtion

图 3.9 Set 𝑏 = −104, 𝑐 = −106, vary the parameter 𝑎 from −103 to 103, the only positive root
calculated by Cardano’s formula and the value of our approximation.

Denote the approximation 𝑦 as A(·;𝜆𝑘 , 𝑚𝑘 , 𝑛𝑘), where 𝜆𝑘 , 𝑚𝑘 , 𝑛𝑘 are learnable param-

eters. Substituting C𝑘 (·) with A(·;𝜆𝑘 , 𝑚𝑘 , 𝑛𝑘) in (3.3a), we get the second version of deep

unrolling ADMM (dubbed as ADMM-Net2). A typical layer of ADMM-Net2 is



𝒙 𝑗𝑘 ← A(𝝂
𝑗−1
𝑘 ;𝜆𝑘 , 𝑚𝑘 , 𝑛𝑘), 𝑘 = 1, . . . , 𝐾,

𝒚 𝑗 ← −PR𝐿+ (𝑹𝒙
𝑗 − 𝜎 ⊙ 𝒛 𝑗−1 + 𝒕 𝑗) + 𝒄,

𝒛 𝑗 ← 𝒛 𝑗−1 − 𝛾(𝒚 𝑗 − 𝑹𝒙 𝑗) ⊘ 𝜎 𝑗 ,

𝝂 𝑗 ← 𝒙 𝑗 + 𝜌
𝜇
(𝑾 𝑗)⊤(𝒚 𝑗 − 𝑹𝒙 𝑗 − 𝜎 ⊙ 𝒛 𝑗),

(3.6a)

(3.6b)

(3.6c)

(3.6d)

20

第三章 ADMM-Net for Network Resource Allocation

whereΘ = {𝑾 𝑗 , 𝜎 𝑗 , 𝒕 𝑗}𝑇𝑗=1∪{𝜆𝑘 , 𝑚𝑘 , 𝑛𝑘}𝐾𝑘=1 are the trainable weights. 𝑥 𝑗 (𝒔; {𝑾 𝜏 , 𝜎𝜏 , 𝒕𝜏} 𝑗−1
𝜏=1∪

{𝜆𝑘 , 𝑚𝑘 , 𝑛𝑘}𝐾𝑘=1) is the output of ADMM-Net2 at 𝑗-th layer.

ADMM-Net for MOBAC Recall the ADMM-Net for NUM, the output is differentiable with

respect to the input in each layer. However, the autograd meets its limit when comes to the

𝑦-update of the MOBAC. In the 𝑦-update, we get the output by solving a quadratic program,

which has no closed form solution. Differentiable optimization[37, 38] provides a method to

tackle this problem. But it needs to involve a package in the code. Utilizing the property of

the Moreau envelope may give a simpler and lightweight solution.

Given a non-smooth function 𝑓 , the Moreau envelope is given by

𝑓𝜇 (𝑥) = inf
𝑦
{ 𝑓 (𝑦) + 1

2𝜇
∥𝑥 − 𝑦∥22}.

We note that dom 𝑓𝜇 (𝑥) = R𝑛, and that 𝑓𝜇 (𝑥) is convex. When 𝑓 (𝑥) = |𝑥 |, the Moreau envelope

is the Huber function:

𝑓𝜇 (𝑥) = inf
𝑦

{
|𝑦 | + 1

2𝜇
(𝑥 − 𝑦)2

}
=

{
1

2𝜇𝑥
2, |𝑥 | ≤ 𝜇,

|𝑥 | − 𝜇
2 , |𝑥 | > 𝜇.

𝑓𝜇 (𝑥) can be written as

𝑓𝜇 (𝑥) =
1

2𝜇
∥𝑥∥2 − 1

𝜇
sup
𝑦

{
𝑥𝑇 𝑦 − 𝜇 𝑓 (𝑦) − 1

2
∥𝑦∥2

}
=

1
2𝜇
∥𝑥∥2 − 1

𝜇

(
𝜇 𝑓 + 1

2
∥ · ∥2

)∗
(𝑥).

Therefore, the derivation of 𝑓𝜇 (𝑥) is given by

∇ 𝑓𝜇 (𝑥) =
𝑥

𝜇
− 1
𝜇

argmax
𝑦

{
𝑥𝑇 𝑦 − 𝜇 𝑓 (𝑦) − 1

2
∥𝑦∥2

}
=

1
𝜇

(
𝑥 − prox𝜇 𝑓 (𝑥)

)
In the final step, we use the important point that the gradient of the conjugate function 𝑓 ∗(𝑥)
equals to the optimal 𝑦∗ at which 𝑓 ∗(𝑥) = sup𝑦∈dom(𝑓) 𝑥

𝑇 𝑦 − 𝑓 (𝑦) is achieved.

Substituting 𝑓 (𝑦) = max𝑙 𝑦𝑙/𝑐𝑙, 𝜇 = 1/𝜌, the 𝑦-update can be written as 𝑓𝜇 (𝜽 𝑗) which is

a mapping from 𝜽 𝑗 = 𝑹𝒙 𝑗+1 − 𝒛 𝑗/𝜌 into 𝒚 𝑗+1. We have:

𝜕𝒚 𝑗+1

𝜕𝜽 𝑗
= ∇ 𝑓𝜇 (𝜽 𝑗) = 𝜌(𝜽 𝑗 − 𝒚 𝑗+1).

Thus, we can calculate the derivative using the customized backward. The ADMM-Net

for MOBAC is the same as the ADMM-Net for NUM except the 𝑦-update is replaced by a layer

21

北京大学本科生毕业论文

using quadratic program to forward and Moreau envelope to backward.

3.2.1 Training Strategy

Given a flow distribution 𝒔, we denote the solution by linearized ADMM for NUM or

MOBAC as 𝒙∗(𝑠). Define the normalized square error between ADMM-Net and 𝒙∗(𝑠) as

ℓ(𝒙𝑇 (𝒔;Θ), 𝒙∗(𝒔)) = ∥𝒙
𝑇 (𝒔;Θ) − 𝒙∗(𝒔)∥2
∥𝒙∗(𝒔)∥2

,

where the version of the ADMM-Net is determined by Θ, 𝑇 is the number of layers. The loss

function is defined as:

L(Θ) = E(𝒔,𝒙∗)∼Γℓ(𝒙𝑇 (𝒔;Θ), 𝒙∗(𝒔)) + 𝜆𝑟 (Θ), (3.7)

where Γ is the training set, 𝑟 is the regular term for parameters, 𝜆 is the regular coefficient. In

our implementation, we choose 𝑟 as ℓ1 norm to guarantee the sparsity of the weights.

22

第四章 Numerical Experiment

第四章 Numerical Experiment

In this section, we perform the numerical simulation to illustrate the performance gain

of our two versions of deep unfolding ADMM. We first consider a baseline given by classical

linearized ADMM, then compare ADMM-Net1 and ADMM-Net2 in various standards.

4.1 Data set Descriptions

Small Example In order to get ground-truth solution, we set

• number of links: 𝐿 = 5,

• number of flows: 𝐾 = 6,

• capacity of links: 𝒄 = (1024, 10240, 10240, 40960, 102400)⊤,
• the number of available paths: 𝑃 = [1, 1, 1, 1, 1, 1]⊤,
• the constraint of available paths: 𝑊 = [1, 1, 1, 1, 1, 1]⊤,
• routing matrix:

𝑹 =



0 0 0 0 1 1

0 1 0 1 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 0 1 0 0 0


.

Large Example In this scenario, the classical ADMM only give suboptimal solution, thus

the training strategy has systematic error. We set

• number of links: 𝐿 = 460,

• number of flows: 𝐾 = 561,

• capacity of links: the distribution of 𝒄 is given in Fig. 4.1

• 𝑃 and𝑊 are pre defined in the code according to the real world records.

• routing matrix: we generate 𝑹 using sprand(L, K) in MATLAB, then set the nonzero

elements to 1.

The flow size is generated from gaussian distribution in two examples, which means

𝑠 ∼ N(𝛿,Σ), where 𝛿 ∈ R𝐾 is the mean value vector and Σ ∈ R𝐾×𝐾 is the correlation matrix.

In our setting, 𝛿 = 0𝐾 ,Σ = 𝐼𝐾×𝐾 , where 𝐼 is identical matrix.

We first sample a flow size 𝑠 from N(0𝐾 , 𝐼𝐾×𝐾), then run classic ADMM to get ground-

23

北京大学本科生毕业论文

109 1010 1011

Link capacity (bits/sec)

0

10

20

30

40

50

60

70

80

90

100

C
u

m
u

la
ti
v
e

 %
 o

f
lin

k
s

图 4.1 The cumulative distribution function of link capacity.

truth solution 𝒙𝑔𝑡 , repeat this process 𝑛train + 𝑛test times, where 𝑛train is the number of pairs

contained in training set and 𝑛test is the number of pairs contained in testing set.

4.1.1 Parameters Setting

In this section, we compare ADMM-Net1 and ADMM-Net2 in several performance

measures. Our simulation is performed in MATLAB on a PC with an Intel Core i7 at 2.3GHz

and 16GB of memory. For the parameters in our objective function, 𝛽 is set to be 0.05. In the

classical ADMM, we adjust the parameter 𝜌 according to the Section 3.4 .1 in[6], and set the

parameter 𝜇 = 1.1× 𝜌∥𝑹∥22. In the 𝒛 -update, we take an additional step length with 𝛾 = 1.618,

which demonstrates better convergence performance. We set the maximal iteration number to

20000, and adopt following stopping criteria:

• primal residual:

∥𝒚 𝑗 − 𝑹𝒙 𝑗 ∥2 ≤
√
𝐿𝜖 abs + 𝜖 rel max{∥𝒚 𝑗 ∥2, ∥𝑹𝒙 𝑗 ∥2},

• dual residual:

∥𝜌𝑹⊤(𝒚 𝑗 − 𝒚 𝑗−1)∥2 ≤
√
𝑃𝜖 abs + 𝜖 rel∥𝑹⊤𝒛 𝑗 ∥2,

• constraint violation:

∥max(𝑹𝒙 − 𝒄, 0)∥2/max(
√
𝐿, ∥𝒄∥2) ≤ 𝜖 tol,

where we set 𝜖 abs = 10−6, 𝜖 rel = 10−6, and 𝜖 tol = 10−10. We utilize

24

第四章 Numerical Experiment

• the averaged normalized root mean square error (NRMSE), which indicates the loss

between output and ground-truth solution,

𝐸 (Θ) = 1
|Γ|

∑
(𝑠,𝒙𝑔𝑡) ∈Γ

∥�̂�(𝑠,Θ) − 𝒙𝑔𝑡 ∥2
∥𝒙𝑔𝑡 ∥2

,

where Γ denotes testing set.

• the total completion time, namely delay

delay =
𝐾∑
𝑘=1

𝑠𝑘
∥𝒙𝑘 ∥1

,

• the proportional fairness,

fairness = 𝛽
𝐾∑
𝑘=1

log(∥𝒙𝑘 ∥1),

• the maximal (say the worst-case) link utilization ratio,

load = max
𝑙

𝑹[𝑙]𝒙
𝒄𝑙

,

• the objective function value in NUM problem,

obj = total − fairness,

as performance measures, all of them are averaged over testing set in practice.

4.1.2 Performance Comparison

表 4.1 classical ADMM vs deep unrolling ADMM in small example.

method loss obj delay fairness load iteration/layers
ADMM 0 -0.619 1.944 2.563 1.00 3207

ADMM-Net1 0.026 -2.389 0.298 2.687 31.45 1
ADMM-Net2 0.072 0.645 3.230 2.585 1.00 1
ADMM-Net1 0.022 -2.358 0.328 2.686 35.73 3
ADMM-Net2 0.074 0.589 3.179 2.590 1.05 3

表 4.2 classical ADMM vs deep unrolling ADMM in large example.

method loss obj delay fairness load iteration/layers
ADMM 0 -183.355 4.377 187.732 1.00 20000

ADMM-Net1 0.152 -185.756 5.218 190.802 3.344 2
ADMM-Net2 0.249 -164.463 24.378 188.840 1.01 2
ADMM-Net1 0.128 -185.920 4.898 190.818 3.573 3
ADMM-Net2 0.248 -164.400 24.286 188.891 1.01 3

25

北京大学本科生毕业论文

Our nets reduce the computational complexity significantly. In both examples, we attain

the approximate solution in with only 3 layers, which is equivalent to 3 iterations in classical

ADMM. However, the main drawback is that we can not beats the classical ADMM in all

performance measures at one model. ADMM-Net1 gives a load larger than 1. ADMM-Net2

is too conservative and give a higher delay than the classical ADMM. Our future work is

constructing a new model to address this issue.

Another interesting observation is that ADMM-Net could give a fast approximate solution,

but if we want to get a precise result, which means converge to the solution derived by traditional

methods, the architecture of network become untrainable. However, when we pay attention

to the convergence process of ADMM, see Fig 4.2. We find the distance between iterative

solution and true solution decrease sharply. Besides, the approximate solution produced by

ADMM-Net acctually attain the relative error of 10−2, which is the point that the curve in

Fig 4.2 begin to decrease sharply.

Above observations implies an idea: Can we treat the ADMM-Net as a good warm-start

solver and concatenate it with ADMM? The answer is yes, we generate a new network by mixing

these methods, the convergence process is in Fig 4.2. It is quite stimulating, we successfully

combine the convergence feature of ADMM and fast approximation of ADMM-Net.

0 500 1000 1500 2000 2500 3000 3500 4000

Iteration Times

−8

−7

−6

−5

−4

−3

−2

−1

0

lo
g
(L

(Θ
))

ADMM

Mixed ADMMNet

图 4.2 The convergence process of mixed ADMM-Net, where 𝐿 (Θ) = 1
|Γ |

∑
ℓ(𝑓 (𝒔;Θ), 𝒙gt(𝒔)).

26

第五章 Conclusions

第五章 Conclusions

In this paper, we give several methods for network resource allocation. The linearized

ADMM has the simplest form. But it requires dozens of iterations. This drawback prohibits

the application of linearized ADMM. We want to accelerate the linearized ADMM to meets

real-time needs. An acceleration method is utilizing learn to optimize. We introduce the

three paradigms in L2O. The most suitable method for linearized ADMM is algorithm un-

rolling. Thus, we construct two ADMM-Nets based on the linearized ADMM. The numerical

performance indicates the success of the unrolling. However, the theoretical perspective of

ADMM-Nets is still not clear. Unlike the LISTA, we do not understand the learned weights in

our nets and how to reduce the memory further. Besides theory, the numerical performance

is also can be improved. For instance, can we combine the two ADMM-Nets to reduce both

delay and load in one model? Can we utilize the Plug-and-Play to construct an implicit utility

function and train it in different datasets?

27

北京大学本科生毕业论文

28

参考文献

参考文献

[1] KIMBALL J, WYPYCH T, KUESTER F. Low Bandwidth Desktop and Video Streaming for Collab-
orative Tiled Display Environments[J/OL]. Future Generation Computer Systems, 2016, 54: 336-343
[2021-05-28]. https://linkinghub.elsevier.com/retrieve/pii/S0167739X15002320. DOI: 10/f77zx7.

[2] LEE K, CHU D, CUERVO E, et al. Outatime: Using Speculation to Enable Low-Latency Continuous
Interaction for Mobile Cloud Gaming[C]//Proceedings of the 13th Annual International Conference
on Mobile Systems, Applications, and Services. [S.l. : s.n.], 2015: 151-165. DOI: 10/gg3hbn.

[3] ELBAMBY M S, PERFECTO C, BENNIS M, et al. Toward Low-Latency and Ultra-Reliable Virtual
Reality[J]. IEEE Network, 2018, 32(2): 78-84. DOI: 10/ggr96d.

[4] KELLY F. Charging and Rate Control for Elastic Traffic[J/OL]. European Transactions on Telecom-
munications, 1997, 8(1): 33-37 [2021-04-14]. https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4
460080106. DOI: 10.1002/ett.4460080106.

[5] KELLY F P, MAULLOO A K, TAN D K H. Rate Control for Communication Networks: Shadow
Prices, Proportional Fairness and Stability[J/OL]. Journal of the Operational Research Society, 1998,
49(3): 237-252 [2021-05-28]. https://www.tandfonline.com/doi/full/10.1057/palgrave.jors.2600523
. DOI: 10/c8kvzc.

[6] BOYD S. Distributed Optimization and Statistical Learning via the Alternating Direction Method of
Multipliers[J/OL]. Foundations and Trendső in Machine Learning, 2010, 3(1): 1-122 [2020-08-07].
http://www.nowpublishers.com/article/Details/MAL-016. DOI: 10.1561/2200000016.

[7] WANG J, ZHANG F, XIE Z, et al. Joint Bandwidth Allocation and Path Selection in WANs with
Path Cardinality Constraints[EB/OL]. (2020-08-10) [2020-10-31]. http://arxiv.org/abs/2008.03942.
arXiv: 2008.03942 [eess].

[8] Cubic Equation. //Wikipedia. [S.l. : s.n.], 2021 [2021-04-18]. https://en.wikipedia.org/w/index.php
?title=Cubic_equation&oldid=1018308997.

[9] ZHANG J, PENG Y, OUYANG W, et al. Accelerating ADMM for Efficient Simulation and Opti-
mization[EB/OL]. (2019-09-01) [2020-08-07]. http://arxiv.org/abs/1909.00470. arXiv: 1909.00470
[cs, math].

[10] CHEN T, CHEN X, CHEN W, et al. Learning to Optimize: A Primer and A Benchmark[EB/OL].
(2021-03-23) [2021-03-26]. http : / / arxiv .org / abs / 2103 .12828. arXiv: 2103 .12828 [cs, math,
stat].

[11] LI K, MALIK J. Learning to Optimize[EB/OL]. (2016-06-06) [2020-08-07]. http://arxiv.org/abs/1
606.01885. arXiv: 1606.01885 [cs, math, stat].

[12] ANDRYCHOWICZ M, DENIL M, GOMEZ S, et al. Learning to Learn by Gradient Descent by
Gradient Descent[EB/OL]. (2016-11-30) [2020-08-07]. http:/ /arxiv.org/abs/1606.04474. arXiv:
1606.04474 [cs].

29

https://linkinghub.elsevier.com/retrieve/pii/S0167739X15002320
https://doi.org/10/f77zx7
https://doi.org/10/gg3hbn
https://doi.org/10/ggr96d
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4460080106
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4460080106
https://doi.org/10.1002/ett.4460080106
https://www.tandfonline.com/doi/full/10.1057/palgrave.jors.2600523
https://doi.org/10/c8kvzc
http://www.nowpublishers.com/article/Details/MAL-016
https://doi.org/10.1561/2200000016
http://arxiv.org/abs/2008.03942
https://arxiv.org/abs/2008.03942
https://en.wikipedia.org/w/index.php?title=Cubic_equation&oldid=1018308997
https://en.wikipedia.org/w/index.php?title=Cubic_equation&oldid=1018308997
http://arxiv.org/abs/1909.00470
https://arxiv.org/abs/1909.00470
https://arxiv.org/abs/1909.00470
http://arxiv.org/abs/2103.12828
https://arxiv.org/abs/2103.12828
https://arxiv.org/abs/2103.12828
http://arxiv.org/abs/1606.01885
http://arxiv.org/abs/1606.01885
https://arxiv.org/abs/1606.01885
http://arxiv.org/abs/1606.04474
https://arxiv.org/abs/1606.04474

北京大学本科生毕业论文

[13] CHEN Y, HOFFMAN M W, COLMENAREJO S G, et al. Learning to Learn without Gradient
Descent by Gradient Descent[C/OL]//International Conference on Machine Learning. [S.l.]: PMLR,
2017: 748-756 [2021-03-27]. http://proceedings.mlr.press/v70/chen17e.html.

[14] CAO Y, CHEN T, WANG Z, et al. Learning to Optimize in Swarms[EB/OL]. (2019-11-16) [2021-
05-14]. http://arxiv.org/abs/1911.03787. arXiv: 1911.03787 [cs, q-bio, stat].

[15] LI K, MALIK J. Learning to Optimize Neural Nets[EB/OL]. (2017-11-30) [2020-08-07]. http://arx
iv.org/abs/1703.00441. arXiv: 1703.00441 [cs, math, stat].

[16] BECK A, TEBOULLE M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
Problems[J/OL]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202 [2020-08-09]. http://epu
bs.siam.org/doi/10.1137/080716542. DOI: 10.1137/080716542.

[17] VENKATAKRISHNAN S V, BOUMAN C A, WOHLBERG B. Plug-and-Play Priors for Model
Based Reconstruction[C]//2013 IEEE Global Conference on Signal and Information Processing.
[S.l. : s.n.], 2013: 945-948. DOI: 10.1109/GlobalSIP.2013.6737048.

[18] MEINHARDT T, MOLLER M, HAZIRBAS C, et al. Learning Proximal Operators: Using Denoising
Networks for Regularizing Inverse Imaging Problems[C/OL]//. [S.l. : s.n.], 2017: 1781-1790 [2021-
04-01]. https://openaccess.thecvf.com/content_iccv_2017/html/Meinhardt_Learning_Proximal_Op
erators_ICCV_2017_paper.html.

[19] RICK CHANG J H, LI C L, POCZOS B, et al. One Network to Solve Them All – Solving Linear
Inverse Problems Using Deep Projection Models[C/OL]//. [S.l. : s.n.], 2017: 5888-5897 [2021-04-
01]. https://openaccess.thecvf.com/content_iccv_2017/html/Chang_One_Network_to_ICCV_2017
_paper.html.

[20] ZHANG K, ZUO W, GU S, et al. Learning Deep CNN Denoiser Prior for Image Restoration[C/OL]//
. [S.l. : s.n.], 2017: 3929-3938 [2021-04-01]. https://openaccess.thecvf.com/content_cvpr_2017/htm
l/Zhang_Learning_Deep_CNN_CVPR_2017_paper.html.

[21] CHAN S H, WANG X, ELGENDY O A. Plug-and-Play ADMM for Image Restoration: Fixed-Point
Convergence and Applications[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 84-98.
DOI: 10.1109/TCI.2016.2629286.

[22] TERRIS M, REPETTI A, PESQUET J C, et al. ENHANCED CONVERGENT PNP ALGORITHMS
FOR IMAGE RESTORATION[J]., 6.

[23] GREGOR K, LECUN Y. Learning fast approximations of sparse coding[C/OL]//ICML 2010 -
Proceedings, 27th International Conference on Machine Learning. [S.l. : s.n.], 2010: 399-406 [2020-
08-07]. https://nyuscholars.nyu.edu/en/publications/learning-fast-approximations-of-sparse-codin
g.

[24] CHEN X, LIU J, WANG Z, et al. Theoretical Linear Convergence of Unfolded ISTA and Its Practical
Weights and Thresholds[EB/OL]. (2018-11-03) [2021-04-11]. http: / /arxiv.org/abs/1808.10038.
arXiv: 1808.10038 [cs, stat].

[25] LIU J, CHEN X, WANG Z, et al. ALISTA: ANALYTIC WEIGHTS ARE AS GOOD AS LEARNED
WEIGHTS IN LISTA[J]., 2019: 33.

[26] BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy Layer-Wise Training of Deep Networks[M].
[S.l. : s.n.], 2007.

30

http://proceedings.mlr.press/v70/chen17e.html
http://arxiv.org/abs/1911.03787
https://arxiv.org/abs/1911.03787
http://arxiv.org/abs/1703.00441
http://arxiv.org/abs/1703.00441
https://arxiv.org/abs/1703.00441
http://epubs.siam.org/doi/10.1137/080716542
http://epubs.siam.org/doi/10.1137/080716542
https://doi.org/10.1137/080716542
https://doi.org/10.1109/GlobalSIP.2013.6737048
https://openaccess.thecvf.com/content_iccv_2017/html/Meinhardt_Learning_Proximal_Operators_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Meinhardt_Learning_Proximal_Operators_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Chang_One_Network_to_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Chang_One_Network_to_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Learning_Deep_CNN_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Zhang_Learning_Deep_CNN_CVPR_2017_paper.html
https://doi.org/10.1109/TCI.2016.2629286
https://nyuscholars.nyu.edu/en/publications/learning-fast-approximations-of-sparse-coding
https://nyuscholars.nyu.edu/en/publications/learning-fast-approximations-of-sparse-coding
http://arxiv.org/abs/1808.10038
https://arxiv.org/abs/1808.10038

参考文献

[27] SPRECHMANN P, LITMAN R, YAKAR T B, et al. Supervised Sparse Analysis and Synthesis
Operators[J]., 9.

[28] YANG Y, SUN J, LI H, et al. Deep ADMM-Net for Compressive Sensing MRI[C]//NIPS’16:
Proceedings of the 30th International Conference on Neural Information Processing Systems. Red
Hook, NY, USA: Curran Associates Inc., 2016: 10-18.

[29] YANG Y, SUN J, LI H, et al. ADMM-CSNet: A Deep Learning Approach for Image Compressive
Sensing[J/OL]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 521-
538(2020-03-01) [2020-08-07]. https://ieeexplore.ieee.org/document/8550778/. DOI: 10/ghbx9q.

[30] ZHANG J, GHANEM B. ISTA-Net: Interpretable Optimization-Inspired Deep Network for Im-
age Compressive Sensing[C/OL]//2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. Salt Lake City, UT: IEEE, 2018: 1828-1837 [2020-08-07]. https://ieeexplore.ieee.org
/document/8578294/. DOI: 10.1109/CVPR.2018.00196.

[31] XIE X, WU J, ZHONG Z, et al. Differentiable Linearized ADMM[EB/OL]. (2019-05-15) [2020-
08-07]. http://arxiv.org/abs/1905.06179. arXiv: 1905.06179 [cs, stat].

[32] HE B, YUAN X. On the $O(1/n)$ Convergence Rate of the Douglas–Rachford Alternating Direction
Method[J/OL]. SIAM Journal on Numerical Analysis, 2012, 50(2): 700-709 [2021-05-28]. http://ep
ubs.siam.org/doi/10.1137/110836936. DOI: 10/ggmmsw.

[33] MONGA V, LI Y, ELDAR Y C. Algorithm Unrolling: Interpretable, Efficient Deep Learning for
Signal and Image Processing[EB/OL]. (2020-07-09) [2020-08-06]. http://arxiv.org/abs/1912.10557.
arXiv: 1912.10557 [cs, eess].

[34] BALATSOUKAS-STIMMING A, STUDER C. Deep Unfolding for Communications Systems: A
Survey and Some New Directions[EB/OL]. (2019-10-08) [2020-08-07]. http://arxiv.org/abs/1906.0
5774. arXiv: 1906.05774 [cs, eess, math].

[35] SUN H, CHEN X, SHI Q, et al. Learning to Optimize: Training Deep Neural Networks for Interference
Management[J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66(20): 16.

[36] JOURANI A, THIBAULT L, ZAGRODNY D. Differential Properties of the Moreau Envelope[J/OL].
Journal of Functional Analysis, 2014, 266(3): 1185-1237 [2021-05-28]. https://linkinghub.elsevier.c
om/retrieve/pii/S0022123613004424. DOI: 10/f5p7cm.

[37] AGRAWAL A, AMOS B, BARRATT S, et al. Differentiable Convex Optimization Layers[G/OL]//
WALLACH H, LAROCHELLE H, BEYGELZIMER A, et al. Advances in Neural Information
Processing Systems 32. [S.l.]: Curran Associates, Inc., 2019: 9562-9574 [2020-08-07]. http://papers
.nips.cc/paper/9152-differentiable-convex-optimization-layers.pdf.

[38] AMOS B, KOLTER J Z. OPTNET: Differentiable Optimization as a Layer in Neural Networks[EB/OL].
4th version. (2019-10-14) [2020-08-07]. http://arxiv.org/abs/1703.00443. arXiv: 1703.00443 [cs,
math, stat].

31

https://ieeexplore.ieee.org/document/8550778/
https://doi.org/10/ghbx9q
https://ieeexplore.ieee.org/document/8578294/
https://ieeexplore.ieee.org/document/8578294/
https://doi.org/10.1109/CVPR.2018.00196
http://arxiv.org/abs/1905.06179
https://arxiv.org/abs/1905.06179
http://epubs.siam.org/doi/10.1137/110836936
http://epubs.siam.org/doi/10.1137/110836936
https://doi.org/10/ggmmsw
http://arxiv.org/abs/1912.10557
https://arxiv.org/abs/1912.10557
http://arxiv.org/abs/1906.05774
http://arxiv.org/abs/1906.05774
https://arxiv.org/abs/1906.05774
https://linkinghub.elsevier.com/retrieve/pii/S0022123613004424
https://linkinghub.elsevier.com/retrieve/pii/S0022123613004424
https://doi.org/10/f5p7cm
http://papers.nips.cc/paper/9152-differentiable-convex-optimization-layers.pdf
http://papers.nips.cc/paper/9152-differentiable-convex-optimization-layers.pdf
http://arxiv.org/abs/1703.00443
https://arxiv.org/abs/1703.00443
https://arxiv.org/abs/1703.00443

北京大学本科生毕业论文

32

致谢

致谢

本科四年倏忽而过,转眼便到了给毕业论文写致谢的时候.离别的气息尚未弥漫燕

园,夏日的蝉鸣却已经催人起程.

首先感谢我的导师文再文副教授,是他带领我领略了优化研究的美妙.在他悉心的

指导下, 我才得以建立起对研究工作的理性认知. 也是在他的言传身教下, 我意识到不

管是论文的写作,轻重缓急各不相同的任务如何安排,还是 slides的制作,都有可以琢磨

的地方.他的高标准也让我窥见了一名卓越的学者对待自己的研究该有的态度,让我时

刻提醒自己,不能轻易放松要求.

其次感谢我的室友们,他们是马佳磊,付瑞昊,熊景洋.很幸运能在 45乙 211这个"

二十一世纪一流寝室" 相遇, 他们的乐观开朗与善解人意让寝室成为了温馨的港湾, 不

管是每晚的卧谈会,还是周末的火锅局,我都能感受到敞开心扉交谈的美好.

感谢在树洞遇见的群友们,他们分别是马佳磊,王宇萱,曾楚原,李润珩,朱哲毅,谈

忆萱,康佳楠,王彤,游方宜.我们相识于大一的失眠夜晚,在四年的时间里一起成长,分

享了青春岁月里的种种喜悦与忧愁,是他们的陪伴给了我完整的大学生活.

感谢李欣怡, 她陪伴我走过了低谷, 教会了我该怎样对待生活, 怎样爱自己和爱身

边的人,这或许是大学最重要的一课.

感谢我的父亲, 他锤炼了我的品格. 感谢我的母亲, 是她无私的爱和无条件的信任

支撑我走到今天,让我敢于做出一个又一个不寻常的选择.

33

北京大学本科生毕业论文

34

北京大学学位论文原创性声明和使用授权说明

原创性声明

本人郑重声明：所呈交的学位论文，是本人在导师的指导下，独立进行研究工作

所取得的成果。除文中已经注明引用的内容外，本论文不含任何其他个人或集体已经

发表或撰写过的作品或成果。对本文的研究做出重要贡献的个人和集体，均已在文中

以明确方式标明。本声明的法律结果由本人承担。

论文作者签名： 日期： 年 月 日

学位论文使用授权说明
（必须装订在提交学校图书馆的印刷本）

本人完全了解北京大学关于收集、保存、使用学位论文的规定，即：

• 按照学校要求提交学位论文的印刷本和电子版本；

• 学校有权保存学位论文的印刷本和电子版，并提供目录检索与阅览服务，在校

园网上提供服务；

• 学校可以采用影印、缩印、数字化或其它复制手段保存论文；

• 因某种特殊原因须要延迟发布学位论文电子版，授权学校在 □ 一年 / □ 两年 /

□三年以后在校园网上全文发布。

（保密论文在解密后遵守此规定）

论文作者签名： 导师签名： 日期： 年 月 日

wenzw
wenzw-Ch

	封面
	摘要
	ABSTRACT
	目录
	Introduction
	Background and Motivation
	Organization

	Linearized ADMM for Network Resource Allocation
	Model Settings
	Network Utility Maximization (NUM)
	Multi-objective Bandwidth Allocation with Path Cardinality Constraints (MOBAC)
	Linearized ADMM for Network Resource Allocation
	Linearized ADMM
	Linearized ADMM for NUM

	Linearized ADMM for MOBAC

	ADMM-Net for Network Resource Allocation
	Learn to Optimize (L2O)
	Model-free
	Plug-and-play (PnP)
	Algorithm Unrolling

	ADMM-Net for Network Resource Allocation
	Training Strategy

	Numerical Experiment
	Data set Descriptions
	Parameters Setting
	Performance Comparison

	Conclusions
	参考文献
	致谢
	北京大学学位论文原创性声明和使用授权说明

