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ABSTRACT

ADMM-Net: An Algorithm Unrolling Approach For Network Resource

Allocation

Zhonglin Xie (Computational Mathematics)
Directed by Zaiwen Wen

ABSTRACT

Network resource allocation is an extremely important problem. A commonly used modeling
method is to abstract it as a utility function maximization (NUM) problem under the network
bandwidth limit. This method is simple and effective, and its primitive-dual algorithm is easy
Distributed implementation. However, in a wide area network, there is often more than one
feasible path for each data stream, and their respective needs are not consistent. At this time,
a new framework needs to be developed to redistribute network resources. The need to ensure
large bandwidth and low latency are If it is satisfied, a load of each line in the network should
be as balanced as possible. To meet the requirements of timeliness, a method of quickly solving
the new model should be developed. The main work of this paper can be summarized as:

The background of the NUM problem is studied, and on this basis, a multi-objective
optimization model MOBAC that improves the fairness of distribution and reduces the delay at
the same time is proposed. This is a non-convex and non-smooth problem, and the linearized
ADMM is used to give Solving algorithm. Learn to optimize is investigated, which provides a
way to speed up traditional algorithms. Using the algorithm rolling, two types of ADMM-Net

based on linearized ADMM are constructed, and the convergence process is greatly accelerated.

KEY WORDS: Network Utility Maximization, ADMM, Learn to Optimize, Algorithm Un-

rolling

I



JERTREEAR A Bl 18 5L

v



H %

ffs—% Introduction

1.1  background and Motivation . . . . . . . . . . . . . .. .. o0 e e

L2 Organization . . . . . . . . . . .o e e e e e e e e e

%f % Linearized ADMM for Network Resource Allocation

.1 Modeldettingy . . . . . . . . . e e e

£.2 Network Utility Maximization (NUM) . . . . . . . . . . . . . ... ... ...

£.5  Multi-objective bandwidth Allocation with Path Cardinality Constraints (MOBAC)

2.4 1 Linearized ADMM

2.4 Cinearized ADMM for NUM

— ¥ ADMM-Net for Network R rce Allocati
B.T Learnto Optumize (L20) . . . . o v v v e e e e e e s e

B Model-tred

p.1.2  Plug-and-play (PnFP) . . . . . . .. . ... oo oo

p.1.5 Algorithm Unrolling . . . . . . . . . . .. . ... ... ... .......

p.2.1 lraining Strategy] . . . . . . . ..o e e e e e e

EsPUS  Numerical Experiment

g.1  DatasetDescriptiony . . . . . . . . . . . . Lo L e e

B T.T Parameters Settng . . . . . . v v v v v v e e e e e e e e

g.1.2  Performance CompariSOn . . . . . . . . . . v vt i e e e e e e e e

#i_Conclusion

O N W Wy, A LW W

23
23
24
25

27

29

33

35



JERTREEAR A Bl 18 5L

VI



Yaxand

#5—=  Introduction

$—= Introduction

1.1 Background and Motivation

In wide area networks (WANS), the resource is shared among different various applica-
tions. Such as high-denition video applications!™, online gaming!”, and video conferencing!®!.
Some of them require low latency, and some of them require high throughput. It is challenging
to satisfy their demands at the same time. There are several reasons. First, the network resource
is limited but the demands are extreme. Second, the number of available paths is quite different
from the demands. A desired solution should cover all of them, such as single-path routing or
sparse routing.

Network utility maximization (NUM) is a popular framework for network resource alloca-
tion. But the objective function in NUM usually concerns only one measurement performance,
we want to build a new framework to meet the various requirements of the applications. This
framework leads to a non-smooth non-convex optimization problem, which is quite hard to
solve. Fortunately, by introducing an auxiliary variable, the linearized ADMM (LADMM), an
algorithm of growing attention, is well suited to solve it. However, LADMM-based algorithm
requires many iterations to derive the solution. We need to accelerate the it.

Learn to optimize (L20) gives a promising increase of the numerical performance. We
use one of the L20 paradigm named algorithm unrolling to accelerate the convergence speed
of LADMM-based algorithm. The numerical experiments indicates the success of the rolled

algorithm.

1.2 Organization

In chapter =, we give a detailed description of the system model. Then, we propose two
frameworks to model the network resource problem. After that, we give a brief introduction
of ADMM. The linearized ADMM for two frameworks are derived based on a specific utility
function, which meets the demand of various applications.

In chapter =, we introduce the learn to optimize (L20). It includes three paradigms:
model-free, Plug-and-Play (PnP), and algorithm unrolling, while the first one is more like a
neural network and the others maintain the architecture of classical iterations. Based on these
works, we propose the ADMM-Net for network resource allocation. Besides, the backward of

1
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ADMM-Net is not trivial even with autograd. We introduce the Moreau envelope to overcome
it. This trick is also valid for other ADMM-based networks.

In chapter P, we compare the different algorithms in various performance measure-
ments. ADMM-Net shows its advantage by reducing the inference cost and give a high-quality
approximation of the ground-truth solution.

We conclude the paper in B, Some reflections on the algorithm unrolling are given.

Besides, we discuss the future directions of our work.
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¥ —EF Linearized ADMM for Network Resource Allocation

In this section, we describe the general network resource allocation problem, then give a
popular framework named network utility maximization (NUM). Based on NUM, we propose
a framework for multi-objective (e.g., utility, load balancing) allocation and path selection
problem. Finally, we utilize the separable structure of these frameworks and derive the

iterative algorithm based on linearized ADMM.

2.1 Model Settings

We consider K flows indexed by k (k = 1,2,---, K) which are needed to be delivered
from source nodes to destination nodes. The size of the k-th flow is s (s, > 0, Vk). We denote
the overall source sizes vector as s = (s1,82, - ,5k)'. There are L uni-directional links
indexed by / (I = 1,2,---, L) in the network. The capacity of the /-th link is ¢; (¢; > 0, VI).
We also denote the overall network capacity as a vector ¢ = (c¢y,¢p,--+ ,c)".

For the k-th flow, there is an affiliated source-destination pair and P available paths
indexed by j(j = 1,2,--+,Px,Vk). xi = (xg1, Xk, Xk,p,) ' (Xk,; = 0,Vk, j) is the
resource allocation vector of the k-th flow, where x; ; is the resource allocated at the j-th path
for the k-th flow. It is worth mentioning that the path with O resource allocated is not selected.
As we mentioned in &, the number of available paths is constrained by |[xi|lo < wi. We
denote the overall network resource allocation vector as x = (x[,x,, - ,Xg)".

The overall available paths information is represented by a routing matrix. For the k-th

flow, the routing matrix

k k k
R1,1 R1,2 Rl,Pk
k k k
R, = R2,1 Rz,z RQ,Pk
k= . . . . >
k k k
RL,l RL,z RL,Pk

where Rf; € {0,1}. R}, = 1 means the path j of the k-th flow passes the /-th link and vice

versa. We define the overall network routing matrix as

K
R=(R,R,,---,Rg), where R € {0,1}F, P = ZP"'
k=1

Fig. T gives an example of a small network with five links and two flows (black and red).

3
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Kl 2.1  An illustrative example network with ve links and two users. The rst user (red line),
whose source node is S1 and destination node is D, has rate x| ; and x; ; on its two paths. The
second user (black line), whose source node is S2 and destination node is D, has rate x, ; and
X2, on its two paths. The numbers next to the lines represent the link indices.

Each flow has two available paths (solid line and dashed line) and the corresponding routing

matrices for the two flows are given by

1 0 00
1 0
R, =10 ,Ro=11 0].
00 01
00 1 0

In general, since each path only passes a small portion of all links over the entire network, R

is actually very sparse.

2.2 Network Utility Maximization (NUM)

In the 1997 and 1998, the seminal papers™ > proposed an innovative framework for

resource allocation. They reduce the resource allocation problem to an optimization problem:

K
min  — > Ui(llxilly)
k=1

st. Rx<c 2.1)
x>0

lxkllo < we, Vk,

4
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where Uy () is the utility function of the k-th flow. Since x ; > 0,Vk, j, we have |[x.|; =

Zf:kl xi, ;. Utility functions may be non-decreasing and may depend on delay (”;ﬁ), fairness

(log(llxkll1)), etc.

2.3 Multi-objective Bandwidth Allocation with Path Cardinality Constraints
(MOBAC)

To avoid the congestion, it is important to balance the load of different links in the network.

Thus, we add the link utilization rate term %’l]x to measure the network load, where R[] is

the /-th row of the routing matrix R. We want to minimize the link load in the worst case.
Mathematically speaking, we consider the following problem

K

min E ~Us(llxkll1) + @ max
X
k=1

R[!]x

Ci

st. Rx<c (2.2)
lxillo < we, VEk
x>0,

where a, 5 is the predefined parameters to balance the different term.

2.4 Linearized ADMM for Network Resource Allocation

In this section, we first give a brief introduction to the alternating direction method of
multipliers (ADMM). Then, we derive the linearized ADMM for NUM and MOBAC given an
utility function of the following form:

Sk

Ur(xy) = Blog(llxxll1) — Kl (2.3)

2.4.1 Linearized ADMM

The alternating direction method of multipliers®! (ADMM) is a variable splitting algo-
rithm of growing popularity due to both simplicity and efficiency. ADMM solves the problem
in the following form:

min  f(x) + g(2)

s.t. Ax+ Bz =c,

(2.4)

5



JERTREEAR A Bl 18 5L

where x € R",z € R™, Ais a p X n matrix, B is a p X m matrix. Given the penalty parameter

o, the augmented Lagrangian function of the problem (24) is
Ly(x.2.4) = f(x) +9(2) =y (Ax+ Bz = ¢) + Ll Ax + Bz ||},

where y is the Lagrangian multiplier vector of the constrain Ax + Bz = ¢c. ADMM recursively

performs the iterations:

x**!:= argminL, (x, z%, y*)

X

Zk+1 = argmian (Xk+1, Z yk)

Z
yk+1 = yk +p (Axk+1 +sz+1 _ C) )
However, the subproblems in above iteration may have no explicit solutions. Many variants
of the ADMM have been developed to address this issue. One of them, named linearized

ADMM, transforms the x subproblem to
1
"= argmin(V, L, (x*, 2%, yk)T (x— x5+ n—llx - x*13). (2.5)
X k

Actually, the solution of (Z3) equals to performing one step gradient descent to the original
subproblem with stepsize 7. Linearized ADMM fails when f(x) is non-differentiable. We
can utilize the linearization process only in the quadratic term ||Ax + Bz — c¢|| and optimize

following problem:
k
1
x**! := argmin((pA"T (Ax* + Bz" — ¢ - y—))T(x —x*) + f(x) + —|lx = x*]13).
X P Nk

It is worth mentioning that above problem is separable when f(x) owns the separable structure,
which means we can solve the problem by component. This property may simplify the problem

significantly.
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2.4.2 Linearized ADMM for NUM

Introducing the auxiliary variable y = Rx, problem (2T is converted to an equivalent

form:

K
min  — > Ui(lleell)
Y =1

st. y=Rx
£ >0 (2.6)
y<c
xkllo < wi, Yk.
The augmented Lagrangian function of above problem is
K
Ly(x.:2) = = " Unlllxelly) +27(y = Rx) + Sy = R, @)

k=1
where z is a Lagrangian multiplier vector associated with the constraint y = Rx in (Z.f), and
p > 0 is a penalty parameter. The ADMM for problem in (Z-6) is derived by alternatively
minimizing L, in (277) with respect to x and y with the other variables fixed. Specifically, the

iterative steps are given by

x/ =argminL,(x,y’ ";z/7")

xeX
= argmin— > Ur(lleell) + 5" — R+ —IF, (2.8)
xeX =1 P
y’ =argmin L,(x’,y;z/™")
Yy=<c
p i
=argmin = ||y — Rx/ + =—|%, (2.9)
y<c 2 P
where X = {x | x > 0,||xxllo0 < wg,Vk}, j is the step index, x/ = (x{;x'é;--- ;x‘};), and
xi = (xi,l,xi’z, XX ,xi’Pk)T, k=1,2,---,K. After the update steps of x and y as above, the
update of the multiplier z is given by
2/ =727+ p(y’ - Rx)). (2.10)

The x-update subproblem is hard to solve because different blocks of x are coupled together.
To circumvent such an issue, we linearize the quadratic term in (Z-7) at x/~! and add a proximal

7
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term:

7i-1
x/ =arg min - ZUk(llxklll) PR (g’ ~ RxJI_T)x X+ b > Il = X7

xeX =1
. . zj_l
= arg min - Zuk(||xk||1>+—||x R A AT
xe

Now, problem (ZZIT]) can be separated for different sources. Specifically, for the k-th source,

the update of x is given by

x; = arg min —U(||xl1) + —Ika -v 15 (2.12)
xkEXk

where X = {x; | xx = 0, ||xcllo < we}, vV =x/"1+ ’—)RT(yj‘1 - Rx/! - sz*') Without

1 j-1

i1 _ JTUNT e -
loss of generality, suppose the elements of v, (vk 15 Vi2o o Ve Pk) are in descending

order. The solution of problem in (ZI2) is given by

xi’i = max (0, vi:.l + (1), where ui’ly = U;(Z max (0, vi:.l + 1)),

i=1

.y o . . i’ i - 1 .
i’ is the maximal index such that U, (};_, max(O0, vi’ — Vi) 2 —,uvi , and i’ < wy. For

details, one may refer tol”. Invoking (Z3), £; can be found by solving

r_éi_s_kl_w (2.13)
pure uKrloop '

where r; = Zf;l(vk + ). Slnce > 0, =L

K 0, equation (I3 has exactly one positive

root that can be found by Cardano’s formula[“], see Fig. 2. We denote the mapping between

1.5 2.0 2.5 3.0

b "
— 1777%, b,e>0
x T

any real number

—20

K 2.2  Anillustration of finding .
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V‘]i_l and xi as
xl=C(viTh. (2.14)
The update of y writes:
y’ = argmin glly - Rx’|I; - (z7))"(y - Rx'). (2.15)
y=c
The solution of (ZZ13) is iy
. . J-
y’ = —Pri(c — Rx’/ — z_) +c,
: p
where Ppg. is the Euclidean projection on RE = {(x1,x0,-,xp)" | x>0, i=1,2,---,L}.

Using the above results, we get the Linearized ADMM for NUM:

xl —C(vi ) k=1,... K, (2.16a)
. . zf_l
Yy’ — —Ppr(c — Rx' — —) +c, (2.16b)
' p
7 — 277" —yp(y’ - RxY), (2.16¢)
v —x’+=R"(y/ - Rx’ — —), (2.16d)
7 P

where v is the update coefficient of Lagrangian multiplier.

2.5 Linearized ADMM for MOBAC

We derive the linearized ADMM for MOBAC like the NUM. Introducing the auxiliary
variable y = Rx, problem (Z2) equals to

K

min Z—Uk(||xk||1)+ozrnaxﬂ
* k=1 boa

st. y<Rx
(2.17)
y<c
lxillo < we, VEk
x>0,
The augmented Lagrangian function of above problem is
S y P
Ly, 9:2) == ) Ue(lwell) + o max S +27(y = Rx) + Slly - Rx[5, 218)

k=1
where z is a Lagrangian multiplier vector associated with the constraint y = Rx in (Z-6), and

p > 01is a penalty parameter.
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The x-update of linearized ADMM for MOBAC is the same as NUM. We only consider
the y-update of linearized ADMM for MOBAC. It writes:

7! = argmin L, (x/*', y;27)
yey

y

. J

= argminamaxﬂ+'(—)||y — Rx/*! +z—||2, (2.19)
yey Lc 2 Y

where Y = {y | 0 < y < c}. It is non-smooth and hard to obtain an explicit solution

of problem (ZT9). Thus, we introduce a new variable y = Rx and consider the following

quadratic program:
min  ¢(t,y) = at + glly —Rx’" + 27 /p|)?
t,y

st. y<itc

(2.20)
y=>0
y=c,
which is equivalent to problem (Z19). Define an auxiliary function
0/, if 0<86/ <min(cy,te),
yi(t) =4 min(cy, tc;), if 6{ > min(cy, tc;), (2.21)
0, otherwise,
where 6/ = Rx’*' — z//p. Problem (Z20) is equivalent to
min®(1) = ¢(t,y(1)) st. 0<r <1, where y(t) = (1, (1), -+ ,yr(1))". (2.22)
t

Suppose ¢* is the optimal solution of problem (ZZ22). The solution of problem (ZZ20) is given
by y(#*). One may refer to!” for detailed proof. Problem (Z-2T)) can be tackled by optimization
methods based on function value (e.g. fminbnd in MATLAB).

10
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$F=Z= ADMM-Net for Network Resource Allocation

Even though the linearized ADMM can solve problem (1) with simple iterations and
theoretical guarantee. In practice, it usually requires hundreds of iterations to converge,
which is not entirely satisfactory for real-time decision making even with certain acceleration
techniques!®. In this section, we introduce a novel method named Algorithm unrolling to

overcome this difficulty.

3.1 Learn to Optimize (L.20)

In recent days, a research field named learn to optimize attracts much attention™!. This
approach aims to automate the designation of optimization algorithms. We call an optimization
problem as optimizee and an optimization algorithm as optimizer. As illustrated in Fig. B,
classical optimizers are designed for a wide range of problems with particular properties.
Learn to optimize leverages machine learning to improve the performance of optimizers for
similar optimizees. The paradigm of learn to optimize is shown in Fig. BZJ. We train a L20
optimizer offline and test it online. There are three approaches to construct a L20 optimizer:
model-free, plug-and-play (PnP), and algorithm unrolling. Model-free methods construct a
L20 optimizer from a machine learning model directly. Plug-and-play methods utilize the
modular architecture of optimizers (e.g. ADMM) and substitute the module with a learnable
model. Algorithm unrolling methods only make some predefined parameters in classical

optimizer become learnable, which preserve the original architecture.

/{ Selected }\

Optimizer

[ Classical

Optimizers >
J [New Optimizeesm]

\
S
AN

\ Online /

K 3.1 The framework of classical algorithm

11
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K 3.2 The framework of learn to optimize

3.1.1 Model-free

Gradient-type algorithms share a common formulation™":
xD e x4 (f, 2@, xEDY, (3.1)

where 7 is a functional of the objective function and past locations. In vanilla gradient descent

method, we choose:
7T(f’ {X(O), ... ,x(i_l)}) = _yAf(x(i—l))’

where v is the stepsize. In gradient descent method with momentum, we have:

i-1
a(f, {x9, .., xVy) = —y(z &IV F (D)),

=0
where v is the stepsize and « is the decay coefficient. x is actually a policy based on trajectory
and objective function value. Thus, we can model 7 using reinforcement learning (RL). The

simulation results in simple examples show that this idea is quite powerful.

In™, the authors demonstrate a method that converts the gradient descent algorithm into
long short term memory (LSTM) network, also gains much improvement. There are many
other examples of the model-free method™ "™ They have a common framework and
show advantages in numerical performance. However, on the one hand, them are hard to get
theoretical results. On the other hand, most of them are based on gradient-type algorithm.
Many problems with objective functions that difficult to get gradient cannot be solved by these
methods, several iteration methods have been developed to solve such problems e.g. ADMMIE!
iterative shrinkage thresholding algorithm (ISTA) & fast iterative shrinkage thresholding al-
gorithm (FISTA)"™. These methods find the minima of subproblems directly, do not need
to compute gradient, which makes the implementation of learning to optimize that described
above become hard.

12
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3.1.2 Plug-and-play (PnP)

ADMM is popular for solving maximum a posteriori (MAP) inverse problems. Given the

measurement y of the ground truth x, the MAP estimation is

[(x,y) + Bs(x),

where [ is the ’distance’ between x and y, s is the regularization term, 3 is the regular coefficient.
MAP problem equals to

min [(x, y) + Bs(v), s.t. x = v.
ADMM for above problem consists of the iterations:

X7+ — argminl (x, y) + $|lx —x7||3
X

v/*! — argminBs(v) + 5jv - v/||3
1

wt —ul + (x) = 0).
Treating the v-update as a functional F from 3, s, v/, A to v/*!, we get a high-level viewpoint
of ADMM. In ADMM for image processing problems, the v-update may be viewed as the
denoising process. However, there are many existing ad-hoc denoisers, e.g. K-SVD, BM3D,
Total Variation (TV). We can substitute the v-update with aforementioned denoisers!™. The
numerical result shows the success of this idea. The modified ADMM outperforms the original

ADMM.

The PnP method is not connected to the L.20 until the recent work!™ "1, Instead of the
manually designed denoisers, they substitute the updates with trainable models. Since PnP
owns modular structure, convergence can be guaranteed under some conditions like bounded
denoisers!™, monotone operator and constrained Lipschitz constant!”, by using the proof
technique in ADMM. Since the learnable parts in PnP is small, the training cost of PnP is

usually lower than model-free methods.

3.1.3 Algorithm Unrolling

Iterative algorithms can be viewed as a recurrent neural networks (RNN) with no train-
able parameters. A natural idea is making the predefined parameters in iterative algorithms
trainable.

In the last decade, a novel technique called algorithm unrolling has been developed. In the
seminal paper!™, the authors, for the first time, propose the approach that unrolls an iterative
algorithm into a deep neural network. It achieved great success by fixing the computational

13
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complexity to a quite small size with an acceptable approximation solution. This technique

starts a different line of work in learn to optimize.

3.1.3.1 LISTA

Consider a sparse coding problem that is classical in source coding, signal recon-
struction, pattern recognition and feature selection. There is an unknown sparse vector

x = [x], e ,x,0T € RM . 'We have its noisy linear measurements:

M
b:dexfn+3:Dx*+e,

m=1
where b € RN, D = [d,, -+ ,dy] € RV*M is the dictionary, and & € RY is additive Gaussian
white noise. This is an undetermined system with N < M. The expensive inference algorithms
prohibits it real-time applications. A popular approach is least absolute shrinkage and selection

operator (LASSO):
rnxin %Hb — Dx||5 + A||x||;, where b = Dx* +&.
Iterative shrinkage thresholding algorithm (ISTA) is a general solution for LASSO, it performs:
= (xR + %DT(b - Dx"), k=0,1,2,...,

where 174 (x) = sign(x) max(0, |x| —6) and L is usually taken as the largest eigenvalue of DD,

A is a hyper parameter. Let W, = 2D, W, =1 — 1 D™D, 6 = 1 1. ISTA can be written as
x5 = 0o (Wb + Waxb).

Note the ISTA can be recognized as a RNN with no learnable weights, see Fig. B3. We can

untie the weights in different steps and make them learnable:
= e (Wb + WEXY), k=1,2,--- ,K-1.

We call this model as learned ISTA (LISTA)™, see Fig. B4. LISTA has the trainable weights
© = {Wf, Wk, 6%}K . Invoking the origin of LISTA, we can make only W, = W = 1 D7
learnable and let W, = I — WD. Since N £ M, this approach will reduce the memory
significantly:

= no (K + WE(b - DXY)), k=1,2,--- K -1,

where the learnable parameters are @ = {6%, W* &, This variant of LISTA is named LISTA
with coupling weights (LISTA-CP). The necessary condition for the convergence of LISTA
14
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@ b
ceded ©  © @

Layer 1 Layer 2 : Layer K

x

K 3.3 RNN Structure of

ISTA K] 3.4 Unrolled Learned ISTA Network

% 3.1 Summary: variants of LISTA and the number of parameters to learn.

LISTA LISTA-CP TiLISTA | ALISTA
O (KM>*+K+KMN) | OKNM +K) | OONM +K) | O(K)

has been proved™!:
6 — 0, Wy — (I1-WfD) — 0, as k — oo,

which provides the theoretical equivalence of LISTA and LISTA-CP. The further work!™!
proposes an analysis that reduces the size of learnable parameters. Based on the LISTA-CP,

we can tie the weights in different steps and result in tied LISTA (TiLISTA):
2 = o (xX* +y*W(b - Dx*)), k=1,2,--- ,K-1

with learnable parameters © = {6, )/"}f:1 U W. The W actually aims to solve the following
problem!™!:
A(D) = inf { max W.)D.;}. (3.2)

W eRN*M i#]
W'D, ;=1 1<i,j<M

This is a linear program with a piece-wise linear objective function and linear constraints.
Since it is feasible, and
0< (D) < max D!D;.
1<i,j<M
[ is bounded, there exists optimal solution. We denote the solution set of the problem (B2)
as W(D) = {W € RV™ : W attains the infimum}. Substituting the W in TiLISTA with a
solution W € ‘W (D), we get the analytic LISTA (ALISTA):

=g Wb - D), k=12, K -1

with the only learnable parameters © = {y*, 9*}X_ . For each model, x* depends on ©, b, x°.
Denote xX as xX(®, b, x°). Given the distribution of b, x*, we train the model by solving the
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optimization problem:

x%(0,b,x°) - x*ll%.

min E(b,x*)
(]

Stochastic gradient descent (SGD) can be applied to solve this minimization problem. The
gradient w.r.t. x¥ on © are obtained with the chain rule. The difficulties of training RNNs make
us adopt layer-wise training in practical®™. Theoretical linear convergence has been proved
both for the models. Numerical experiments reveal the fact that the reduction of learnable

parameters (see Tab. B1l) would not influent the convergence rate of the models, see Fig. B3.

'
[¢,]

-156
-25
-35
-45

NMSE (dB)

-55
-65

—¢—— |STA
—+—— FISTA
-©—— LISTA

—»%—— |ISTA-CPSS
TILISTA
-©O— — ALISTA

BT T T T T T T T T T T T T T T 1
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Iterations / Layers (k)

3 E[xX (@) —x"]|
3.5 NMSE = 10log,, (2Ol

3.1.3.2 ADMM-Net

Inspired by the success of LISTA,” first applies the unrolling technique in ADMM in
a mixed sparse model. The result indicates that unrolling technique is compatible. Since
ADMM is widely adopted in image processing. The researchers have proposed many versions

of ADMM-based deep unrolling algorithm.

Consider a compressive sensing magnetic resonance imaging (CS-MRI) problem. As-
sume x € CV is an MRI image to be reconstructed, y € CN'(N’ < N) is the under-sampled

data. The reconstructed image can be estimated by solving:

L
. 1
£ = argmin{z | Ax —yl3+ ) (D)},
X =1

where A = PF € RNV is a measurement matrix, P € RV*V is a under-sampling matrix,
and F is a Fourier transform. D; denotes a transform matrix for a filtering operation. g(-)
is a regularization function. A; is a regularization parameter. Introduce auxiliary variables
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z={z1,22, "+ , 2L}, above problem equals to:

1 L
min S [|Ax - yl3 + > Dig(z)) st z=Dpx, =12, L.
e 2 I=1

The augmented Lagrangian function is:

L L
1
Ly(x.z.a) = gllAx =yl + Y ig(z) = Y .z = Dix)
=1 =1

L
1Y
+ > Sllz - Dixl3,
=1 2

where a = {a;} are Lagrangian multipliers and p = {p,} are penalty parameters.

We alternatively optimizes {x, z, @} and substitute A = PF,3; = Z—[’:

L
x"=F G [PTy+ ZplFDlT(Z;H -B™N]
=1

= S(Dx" + B i/ pr)
B =B + (D" - z})

where G = PTP + Y., p/F D]/DFT, S(-) is a nonlinear shrinkage function, 7; is an update
rate. But ADMM needs to run dozens of iterations to get a satisfactory result. It is also
challenging to choose the transform D; and shrinkage function S(-) for general regularization
function ¢(-). For different data, tuning the parameters p; and 7; is not trivial. The data flow
of ADMM (Fig. B:6) encourages us to unroll the ADMM and use machine learning to address
these issues. Due to the similarity of LISTA and ADMM-Net, we omit the unrolling details of

Sampling data Reconstructed
in k-space " MR image

stage n

K 3.6 The data flow graph for the ADMM. This graph consists of four types of nodes:
reconstruction (X), convolution (C), non-linear transform (Z), and multiplier update (M).

ADMM-Net here. The deep ADMM-Net for compressive sensing!™! outperforms the existing
methods, this work shows the potential of deep unrolling ADMM, the further work!™ exploits
the architecture used to approximate additive layer and gains better performance. The work
in® present an enlightenment idea that comes from statistical perspective, using a function
to composite the terms in proximal term of ISTA. Based on this idea, the authors successfully
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establish a more general network compare tol”. It is worth mentioning that the proposed
network in® outperforms!™ in compressive sensing tasks with a much simpler architecture,
which shows the power of the idea. Since linearization tricks often be adopted in ADMM, the
deep unrolling version of linearized ADMM (D-LADMM)®" extends the area of unrolling
technique and provides the convergence proof using variational inequality!.

There are numerous papers aim to exploit the potential of deep unrolling, for more results
in image and signal processing, one can refer to/™], this paper reviews the previous notable work
and explains the three advantages of deep unrolling—fast, interpretability and generalizability.
For more results in communication systems, one may refer to/® and!®3,[®3! represents a type
of work that apply deep learning (DL) in Weighted Minimize Mean Square Error (WMMSE),

however, this work has no guarantee for convergence.

3.2 ADMM-Net for Network Resource Allocation

In this section, we describe the details of unrolling the ADMM for NUM, say equations
(DI8), into a deep neural network (DNN). Then, we use the Moreau envelope!®! to derive the
backward of y-update in MOBAC and give the ADMM-Net for MOBAC. We first realize the
Recurrent Neural Network (RNN) structure of ADMM, then unroll the RNN to get ADMM-
Net.

RNN structure of ADMM ADMM is an iteration algorithm. As shown in the Fig. B,

its data flow graph has a recurrent structure. From the perspective of Deep Learning (DL),

20 > 2! > 22 > 23
0 Y > 0 gl — Yyl pl ] 22— y? — L2 — 23— Yy — 3 —» gt

K 3.7 Data flow graph of ADMM, where x, y0, z0 are fixed initial values, s is the input.

ADMM is a RNN with non-trainable weights. A natural question that arises here is can we

parameterize some constants in (_T6) to get trainable weights?

ADMM-Netl To get a DNN with trainable weights, we parameterize several matrices in
(Z18) to make them learnable, then change the corresponding operations to make them com-
patible with the weights. Finally, we terminate the process after 7-th update.
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We use ©, @ to represent element wise multiplication and division, respectively. Prewisely,
at j-th update, we substitute the first R in (ZT6d) with weight W”. To gain more freedom, we
substitute the scalar [1—) with o/ , where o is a n-dimension vector. Naturally, we apply element
wise operations to replace their corresponding scalar version. We introduce the n-dimension
threshold vector #/ and add it to the variable inside proximal mapping of (ZZI6H) to adjust the
threshold of proximal mapping. Adopting the Cardano’s formula in (ZZT6), we get the first
version of deep unrolling ADMM:

xl —C(vi ), k=1,... K, (3.3a)
y — —Pi(Rx/ —c 0/ +¢) +e, (3.3b)
|2 7' —y(y/ — Rx') 0 o, (3.3¢)
yi <—xj+§(Wj)T(yj—ij—0'®zj), (3.3d)

where © = {W/, 0/, t/}7_ are the trainable weights. We use x/(s; {W~, o7, 7}/ :11) to denote
J= =

the output of ADMM-Netl at j-th layer. A typical layer of ADMM-Netl is shown in Fig. BR.

-1 b2l 2i7L —y(y' — RzI) © 0’

zJ \

yl —PRJLr(ij —ooZ +t) +e

/

pi—l s  C(vi™Y), vk Ml —xl + E(WI)T(y/ — Re) — 0 © 27)

\

/

Y

Kl 3.8 A typical layer of ADMM-Net.

ADMM-Net2 The Cardano’s formulain (Z14) is actually a special case of proximal mapping.
Consider the general cubic equation

b
x3+ax2—bx—c:0(:>x———%:—a, (3.4)
X X

where b, ¢ > 0. Fixing b, ¢, denote the only positive root of (B4) as r(a). As illustrated in
Fig. I, we have
r(a) - 0, asa — +oo,

r(a) » —a, asa — —o.
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This fact inspires us to use a single branch of the rotated hyperbola to approximate it. Since

the asymptotes are fixed, we have the fixed eccentricity. Notice that our aim is approximating

Cx 1n finite interval, we use three parameters to control this process, the first one is the shape

parameter A, others are translation parameters my, n;, corresponding to x axis and y axis,

respectively.

a—+myg

2
[(a+my)+ (y+n)](y+ng) = A ﬁy:\/@"‘ﬂk_ — ng.

The numerical result in Fig. B3 indicates that our method is reasonable.

Difference between Cardano's formula and our approxiamtion
T T T T T

1200 4 T T T T

—=—Cardano's formula
—=—Qur approximation

Value
Difference

I I I I I I I I I I I I I I I
0 4
-1000 800 600 400 200 [ 200 400 600 800 1000 1000 800 600 400 200 0 200 400 600 800 1000

(3.5)

Kl 3.9 Setb=-10%c =-10°, vary the parameter a from —10° to 103, the only positive root

calculated by Cardano’s formula and the value of our approximation.

Denote the approximation y as A(-; g, my, ny), where Ay, my, n; are learnable param-

eters. Substituting Cy (+) with A(+; Ax, my, ny) in (B3d), we get the second version of deep

unrolling ADMM (dubbed as ADMM-Net2). A typical layer of ADMM-Net?2 is

X£ — ﬂ(vi_l;/lk,mk,nk),k = 1, N ,K,
y — —Pe(Rx' —oc 0z +t) +c,

7/ — /7 = y(y’ = Rx’) @ o/,

v —xl + (Wi T(y' - Rx! - 5 0 7).
u
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where ® = {W/, o/, tj}f:1 U{ A, my, ni }i_, are the trainable weights. x/ (s; {W™, 0", tT}ij U

{ Ak, my, ni}r_,) is the output of ADMM-Net2 at j-th layer.

ADMM-Net for MOBAC Recall the ADMM-Net for NUM, the output is differentiable with
respect to the input in each layer. However, the autograd meets its limit when comes to the
y-update of the MOBAC. In the y-update, we get the output by solving a quadratic program,
which has no closed form solution. Differentiable optimization!*”*! provides a method to
tackle this problem. But it needs to involve a package in the code. Utilizing the property of
the Moreau envelope may give a simpler and lightweight solution.

Given a non-smooth function f, the Moreau envelope is given by

) = (£ @) + -l = i

We note that dom f,,(x) = R", and that f,,(x) is convex. When f(x) = |x|, the Moreau envelope

is the Huber function:
. 1 o
fu(x) = inf {Iyl +5 (- y)z} = { 2
y H
fu(x) can be written as
1 2 | T Lo
Ju(x) = —IIx[|” = —sup {x"y — uf(y) - 5yl
2u Koy 2
1, o, 1 1L\
= — - — + —|| - .
L (ﬂf 1l ) ()
Therefore, the derivation of f,(x) is given by
x 1 T 1 5
Vfu(x) = — — —argmax (x" y — puf(y) - 5|yl
Ry 2

= i (x — prox,,; (x))

In the final step, we use the important point that the gradient of the conjugate function f*(x)
equals to the optimal y* at which f~(x) = Sup,com(s) xTy — f(y) is achieved.
Substituting f(y) = max; y;/c;, 4 = 1/p, the y-update can be written as f,,(6”) which is
a mapping from 6’ = Rx’*' — z//p into y/*'. We have:
6y.].+1 . . .
T = VI8 = (0 — ).
Thus, we can calculate the derivative using the customized backward. The ADMM-Net

for MOBAC is the same as the ADMM-Net for NUM except the y-update is replaced by a layer
21
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using quadratic program to forward and Moreau envelope to backward.

3.2.1 Training Strategy

Given a flow distribution s, we denote the solution by linearized ADMM for NUM or
MOBAC as x*(s). Define the normalized square error between ADMM-Net and x*(s) as
lx" (s;0) = x* ()]l

llx*(s) 1l ’
where the version of the ADMM-Net is determined by ©, T is the number of layers. The loss

((x" (5:0),x7(s)) =

function is defined as:
L(0) = E x)-rt(x" (5;0),x*(s)) + 1r(0), 3.7)

where I is the training set, r is the regular term for parameters, A is the regular coefficient. In

our implementation, we choose r as ¢; norm to guarantee the sparsity of the weights.
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SME Numerical Experiment

In this section, we perform the numerical simulation to illustrate the performance gain

of our two versions of deep unfolding ADMM. We first consider a baseline given by classical
linearized ADMM, then compare ADMM-Netl and ADMM-Net2 in various standards.

4.1

Data set Descriptions

Small Example In order to get ground-truth solution, we set

number of links: L =5,

number of flows: K =6,

capacity of links: ¢ = (1024, 10240, 10240, 40960, 102400) T,
the number of available paths: P = [1,1,1,1,1,1]7,

the constraint of available paths: W = [1,1,1,1,1,1]T,

routing matrix:

000011
010100
R=[000100
100000
001000

Large Example In this scenario, the classical ADMM only give suboptimal solution, thus

the training strategy has systematic error. We set

number of links: L = 460,

number of flows: K = 561,

capacity of links: the distribution of ¢ is given in Fig. &1l

P and W are pre defined in the code according to the real world records.

routing matrix: we generate R using sprand(L, K) in MATLAB, then set the nonzero

elements to 1.

The flow size is generated from gaussian distribution in two examples, which means

s ~ N(8,%), where 6 € RX is the mean value vector and ¥ € RX*X is the correlation matrix.

In our setting, 6 = 0k, X = Ixxk, Where [ is identical matrix.

We first sample a flow size s from N (0, Ix«x ), then run classic ADMM to get ground-
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K 4.1 The cumulative distribution function of link capacity.

truth solution x9’, repeat this process i, + Ny times, where ng,i, is the number of pairs

contained in training set and n.g is the number of pairs contained in testing set.

4.1.1 Parameters Setting

In this section, we compare ADMM-Netl and ADMM-Net2 in several performance
measures. Our simulation is performed in MATLAB on a PC with an Intel Core i7 at 2.3GHz
and 16GB of memory. For the parameters in our objective function, S is set to be 0.05. In the
classical ADMM, we adjust the parameter p according to the Section 3.4 .1 inl®!, and set the
parameter 4 = 1.1 % p||R||3. In the z -update, we take an additional step length with y = 1.618,
which demonstrates better convergence performance. We set the maximal iteration number to
20000, and adopt following stopping criteria:

 primal residual:
ly” ~ Rx/ll2 < VL™ + € max{lly’|l, || Rx’ |2},

¢ dual residual:
loR™ (g7 — 57 Ml < VPe™ + €9[|R"27 ||,

e constraint violation:
| max(Rx — ¢, 0)|l»/max(VL, [lc])») < €,

where we set € = 107%, €™ = 107°, and €' = 107'°. We utilize
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* the averaged normalized root mean square error (NRMSE), which indicates the loss

between output and ground-truth solution,

b

1 18 (5,0) = x%]l2
E©) = —
©=15 2

(s,x9t)el’
where I denotes testing set.

* the total completion time, namely delay

K
Sk
delay = _
Y= 2 el

* the proportional fairness,

K
fairness = 8 Z log({lxll1),
k=1

* the maximal (say the worst-case) link utilization ratio,

load = max R[l]x’
! C

* the objective function value in NUM problem,
obj = total — fairness,

as performance measures, all of them are averaged over testing set in practice.

4.1.2 Performance Comparison

2% 4.1 cLAssicAL ADMM vs DEEP UNROLLING ADMM IN SMALL EXAMPLE.

method loss obj delay | fairness | load | iteration/layers

ADMM 0 -0.619 | 1.944 | 2.563 1.00 3207
ADMM-Netl | 0.026 | -2.389 | 0.298 | 2.687 | 31.45 1
ADMM-Net2 | 0.072 | 0.645 | 3.230 | 2.585 | 1.00 1
ADMM-Netl | 0.022 | -2.358 | 0.328 | 2.686 | 35.73 3
ADMM-Net2 | 0.074 | 0.589 | 3.179 | 2.590 | 1.05 3

2% 4.2 crLassicAL ADMM vs DEEP UNROLLING ADMM IN LARGE EXAMPLE.

method loss obj delay | fairness | load | iteration/layers

ADMM 0 -183.355 | 4.377 | 187.732 | 1.00 20000
ADMM-Netl | 0.152 | -185.756 | 5.218 | 190.802 | 3.344 2
ADMM-Net2 | 0.249 | -164.463 | 24.378 | 188.840 | 1.01 2
ADMM-Netl | 0.128 | -185.920 | 4.898 | 190.818 | 3.573 3
ADMM-Net2 | 0.248 | -164.400 | 24.286 | 188.891 | 1.01 3
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Our nets reduce the computational complexity significantly. In both examples, we attain
the approximate solution in with only 3 layers, which is equivalent to 3 iterations in classical
ADMM. However, the main drawback is that we can not beats the classical ADMM in all
performance measures at one model. ADMM-Netl gives a load larger than 1. ADMM-Net2
is too conservative and give a higher delay than the classical ADMM. Our future work is
constructing a new model to address this issue.

Another interesting observation is that ADMM-Net could give a fast approximate solution,
but if we want to get a precise result, which means converge to the solution derived by traditional
methods, the architecture of network become untrainable. However, when we pay attention
to the convergence process of ADMM, see Fig B. We find the distance between iterative
solution and true solution decrease sharply. Besides, the approximate solution produced by
ADMM-Net acctually attain the relative error of 1072, which is the point that the curve in
Fig B2 begin to decrease sharply.

Above observations implies an idea: Can we treat the ADMM-Net as a good warm-start
solver and concatenate it with ADMM? The answer is yes, we generate a new network by mixing
these methods, the convergence process is in Fig B2, It is quite stimulating, we successfully

combine the convergence feature of ADMM and fast approximation of ADMM-Net.

—— ADMM
Mixed ADMMNet

0 500 1000 1500 2000 2500 3000 3500 4000
Tteration Times

Kl 4.2 The convergence process of mixed ADMM-Net, where L(®) = ﬁ S L(f(s;0),x8(s)).
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1.2 Conclusions

$HE Conclusions

In this paper, we give several methods for network resource allocation. The linearized
ADMM has the simplest form. But it requires dozens of iterations. This drawback prohibits
the application of linearized ADMM. We want to accelerate the linearized ADMM to meets
real-time needs. An acceleration method is utilizing learn to optimize. We introduce the
three paradigms in L20. The most suitable method for linearized ADMM is algorithm un-
rolling. Thus, we construct two ADMM-Nets based on the linearized ADMM. The numerical
performance indicates the success of the unrolling. However, the theoretical perspective of
ADMM-Nets is still not clear. Unlike the LISTA, we do not understand the learned weights in
our nets and how to reduce the memory further. Besides theory, the numerical performance
is also can be improved. For instance, can we combine the two ADMM-Nets to reduce both
delay and load in one model? Can we utilize the Plug-and-Play to construct an implicit utility

function and train it in different datasets?
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