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摘要

摘要

网络资源分配是一个极为重要的问题.一种常用的建模方法是将其抽象为满足网络带宽限制下

的效用函数最大化 (NUM)问题,这一方法简单有效,且其原始-对偶算法容易分布式实现.但在广域

网中,各数据流的可行路径往往不止一条,各自的需求也不一致,此时需要发展新的框架来重新分配

网络的资源.在保证大带宽与低延时的需求被满足的情况下,网络中各线路的负载应尽可能均衡.为

了满足及时性的要求,应当发展快速求解新模型的方法.本文的主要工作可以归纳为:

研究了 NUM问题的背景,在此基础上提出了一个同时提高分配的公平性并降低延时的多目标

优化模型 MOBAC. 这是一个非凸且非光滑的问题, 利用线性化的 ADMM 给出了求解算法. 调研了

基于学习的优化范式,它提供了加速传统算法的途径.利用算法展开这一技术,构造了两种基于线性

化 ADMM的 ADMM-Net,并极大地加速了收敛过程.

关键词：网络效用最大化，交替方向乘子法，基于学习的优化范式，算法展开
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ABSTRACT

ADMM-Net: An Algorithm Unrolling Approach For Network Resource

Allocation

Zhonglin Xie (Computational Mathematics)

Directed by Zaiwen Wen

ABSTRACT

Network resource allocation is an extremely important problem. A commonly used modeling

method is to abstract it as a utility function maximization (NUM) problem under the network

bandwidth limit. This method is simple and effective, and its primitive-dual algorithm is easy

Distributed implementation. However, in a wide area network, there is often more than one

feasible path for each data stream, and their respective needs are not consistent. At this time,

a new framework needs to be developed to redistribute network resources. The need to ensure

large bandwidth and low latency are If it is satisfied, a load of each line in the network should

be as balanced as possible. To meet the requirements of timeliness, a method of quickly solving

the new model should be developed. The main work of this paper can be summarized as:

The background of the NUM problem is studied, and on this basis, a multi-objective

optimization model MOBAC that improves the fairness of distribution and reduces the delay at

the same time is proposed. This is a non-convex and non-smooth problem, and the linearized

ADMM is used to give Solving algorithm. Learn to optimize is investigated, which provides a

way to speed up traditional algorithms. Using the algorithm rolling, two types of ADMM-Net

based on linearized ADMM are constructed, and the convergence process is greatly accelerated.

KEY WORDS: Network Utility Maximization, ADMM, Learn to Optimize, Algorithm Un-

rolling
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第一章 Introduction

第一章 Introduction

1.1 Background and Motivation

In wide area networks (WANs), the resource is shared among different various applica-

tions. Such as high-denition video applications[1], online gaming[2], and video conferencing[3].

Some of them require low latency, and some of them require high throughput. It is challenging

to satisfy their demands at the same time. There are several reasons. First, the network resource

is limited but the demands are extreme. Second, the number of available paths is quite different

from the demands. A desired solution should cover all of them, such as single-path routing or

sparse routing.

Network utility maximization (NUM) is a popular framework for network resource alloca-

tion. But the objective function in NUM usually concerns only one measurement performance,

we want to build a new framework to meet the various requirements of the applications. This

framework leads to a non-smooth non-convex optimization problem, which is quite hard to

solve. Fortunately, by introducing an auxiliary variable, the linearized ADMM (LADMM), an

algorithm of growing attention, is well suited to solve it. However, LADMM-based algorithm

requires many iterations to derive the solution. We need to accelerate the it.

Learn to optimize (L2O) gives a promising increase of the numerical performance. We

use one of the L2O paradigm named algorithm unrolling to accelerate the convergence speed

of LADMM-based algorithm. The numerical experiments indicates the success of the rolled

algorithm.

1.2 Organization

In chapter二, we give a detailed description of the system model. Then, we propose two

frameworks to model the network resource problem. After that, we give a brief introduction

of ADMM. The linearized ADMM for two frameworks are derived based on a specific utility

function, which meets the demand of various applications.

In chapter 三, we introduce the learn to optimize (L2O). It includes three paradigms:

model-free, Plug-and-Play (PnP), and algorithm unrolling, while the first one is more like a

neural network and the others maintain the architecture of classical iterations. Based on these

works, we propose the ADMM-Net for network resource allocation. Besides, the backward of

1
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ADMM-Net is not trivial even with autograd. We introduce the Moreau envelope to overcome

it. This trick is also valid for other ADMM-based networks.

In chapter 四, we compare the different algorithms in various performance measure-

ments. ADMM-Net shows its advantage by reducing the inference cost and give a high-quality

approximation of the ground-truth solution.

We conclude the paper in 五. Some reflections on the algorithm unrolling are given.

Besides, we discuss the future directions of our work.

2
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第二章 Linearized ADMM for Network Resource Allocation

In this section, we describe the general network resource allocation problem, then give a

popular framework named network utility maximization (NUM). Based on NUM, we propose

a framework for multi-objective (e.g., utility, load balancing) allocation and path selection

problem. Finally, we utilize the separable structure of these frameworks and derive the

iterative algorithm based on linearized ADMM.

2.1 Model Settings

We consider 𝐾 flows indexed by 𝑘 (𝑘 = 1, 2, · · · , 𝐾) which are needed to be delivered

from source nodes to destination nodes. The size of the 𝑘-th flow is 𝑠𝑘 (𝑠𝑘 > 0,∀𝑘). We denote

the overall source sizes vector as 𝒔 = (𝑠1, 𝑠2, · · · , 𝑠𝐾 )⊤. There are 𝐿 uni-directional links

indexed by 𝑙 (𝑙 = 1, 2, · · · , 𝐿) in the network. The capacity of the 𝑙-th link is 𝑐𝑙 (𝑐𝑙 > 0,∀𝑙).
We also denote the overall network capacity as a vector 𝒄 = (𝑐1, 𝑐2, · · · , 𝑐𝐿)⊤.

For the 𝑘-th flow, there is an affiliated source-destination pair and 𝑃𝑘 available paths

indexed by 𝑗 ( 𝑗 = 1, 2, · · · , 𝑃𝑘 ,∀𝑘). 𝒙𝑘 = (𝑥𝑘,1, 𝑥𝑘,2, · · · , 𝑥𝑘,𝑃𝑘 )⊤ (𝑥𝑘, 𝑗 ≥ 0,∀𝑘, 𝑗) is the

resource allocation vector of the 𝑘-th flow, where 𝑥𝑘, 𝑗 is the resource allocated at the 𝑗-th path

for the 𝑘-th flow. It is worth mentioning that the path with 0 resource allocated is not selected.

As we mentioned in 一, the number of available paths is constrained by ∥𝒙𝑘 ∥0 ≤ 𝑤𝑘 . We

denote the overall network resource allocation vector as 𝒙 = (𝒙⊤1 , 𝒙⊤2 , · · · , 𝒙⊤𝐾 )⊤.

The overall available paths information is represented by a routing matrix. For the 𝑘-th

flow, the routing matrix

𝑹𝑘 =

©­­­­­­«
𝑅𝑘1,1 𝑅𝑘1,2 · · · 𝑅𝑘1,𝑃𝑘
𝑅𝑘2,1 𝑅𝑘2,2 · · · 𝑅𝑘2,𝑃𝑘
...

...
. . .

...

𝑅𝑘𝐿,1 𝑅𝑘𝐿,2 · · · 𝑅𝑘𝐿,𝑃𝑘

ª®®®®®®¬
,

where 𝑅𝑘𝑖, 𝑗 ∈ {0, 1}. 𝑅𝑘𝑖, 𝑗 = 1 means the path 𝑗 of the 𝑘-th flow passes the 𝑙-th link and vice

versa. We define the overall network routing matrix as

𝑹 = (𝑹1, 𝑹2, · · · , 𝑹𝐾 ), where 𝑹 ∈ {0, 1}𝐿×𝑃, 𝑃 =
𝐾∑
𝑘=1

𝑃𝑘 .

Fig. 2.1 gives an example of a small network with five links and two flows (black and red).

3
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图 2.1 An illustrative example network with ve links and two users. The rst user (red line),
whose source node is 𝑆1 and destination node is 𝐷, has rate 𝑥1,1 and 𝑥1,2 on its two paths. The
second user (black line), whose source node is 𝑆2 and destination node is 𝐷, has rate 𝑥2,1 and
𝑥2,2 on its two paths. The numbers next to the lines represent the link indices.

Each flow has two available paths (solid line and dashed line) and the corresponding routing

matrices for the two flows are given by

𝑹1 =

©­­­­­­­­­«

1 0

1 0

0 1

0 0

0 0

ª®®®®®®®®®¬
, 𝑹2 =

©­­­­­­­­­«

0 0

0 0

1 0

0 1

1 0

ª®®®®®®®®®¬
.

In general, since each path only passes a small portion of all links over the entire network, 𝑹

is actually very sparse.

2.2 Network Utility Maximization (NUM)

In the 1997 and 1998, the seminal papers[4, 5] proposed an innovative framework for

resource allocation. They reduce the resource allocation problem to an optimization problem:

min
𝒙

−
𝐾∑
𝑘=1

𝑈𝑘 (∥𝒙𝑘 ∥1)

s.t. 𝑹𝒙 ≤ 𝒄

𝒙 ≥ 0

∥𝒙𝑘 ∥0 ≤ 𝑤𝑘 ,∀𝑘,

(2.1)

4
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where 𝑈𝑘 (·) is the utility function of the 𝑘-th flow. Since 𝑥𝑘, 𝑗 ≥ 0,∀𝑘, 𝑗 , we have ∥𝒙𝑘 ∥1 =∑𝑃𝑘
𝑗=1 𝑥𝑘, 𝑗 . Utility functions may be non-decreasing and may depend on delay ( 𝑠𝑘

∥𝒙𝑘 ∥1 ), fairness

(log(∥𝒙𝑘 ∥1)), etc.

2.3 Multi-objective Bandwidth Allocation with Path Cardinality Constraints

(MOBAC)

To avoid the congestion, it is important to balance the load of different links in the network.

Thus, we add the link utilization rate term 𝑹 [𝑙 ]𝒙
𝑐𝑙

to measure the network load, where 𝑹[𝑙] is

the 𝑙-th row of the routing matrix 𝑹. We want to minimize the link load in the worst case.

Mathematically speaking, we consider the following problem

min
𝒙

𝐾∑
𝑘=1

−𝑈𝑘 (∥𝒙𝑘 ∥1) + 𝛼max
𝑙

𝑹[𝑙]𝒙
𝑐𝑙

s.t. 𝑹𝒙 ≤ 𝒄

∥𝒙𝑘 ∥0 ≤ 𝑤𝑘 , ∀ 𝑘

𝒙 ≥ 0,

(2.2)

where 𝛼, 𝛽 is the predefined parameters to balance the different term.

2.4 Linearized ADMM for Network Resource Allocation

In this section, we first give a brief introduction to the alternating direction method of

multipliers (ADMM). Then, we derive the linearized ADMM for NUM and MOBAC given an

utility function of the following form:

𝑈𝑘 (𝒙𝑘) = 𝛽 log(∥𝒙𝑘 ∥1) −
𝑠𝑘

𝐾 ∥𝒙𝑘 ∥1
. (2.3)

2.4.1 Linearized ADMM

The alternating direction method of multipliers[6] (ADMM) is a variable splitting algo-

rithm of growing popularity due to both simplicity and efficiency. ADMM solves the problem

in the following form:
min 𝑓 (𝑥) + 𝑔(𝑧)

s.t. 𝐴𝑥 + 𝐵𝑧 = 𝑐,
(2.4)

5
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where 𝑥 ∈ R𝑛, 𝑧 ∈ R𝑚, 𝐴 is a 𝑝 × 𝑛 matrix, 𝐵 is a 𝑝 × 𝑚 matrix. Given the penalty parameter

𝜌, the augmented Lagrangian function of the problem (2.4) is

𝐿𝜌 (𝑥, 𝑧, 𝑦) = 𝑓 (𝑥) + 𝑔(𝑧) − 𝑦⊤(𝐴𝑥 + 𝐵𝑧 − 𝑐) + 𝜌
2
∥𝐴𝑥 + 𝐵𝑧 − 𝑐∥22,

where 𝑦 is the Lagrangian multiplier vector of the constrain 𝐴𝑥 + 𝐵𝑧 = 𝑐. ADMM recursively

performs the iterations:
𝑥𝑘+1 := argmin

𝑥
𝐿𝜌

(
𝑥, 𝑧𝑘 , 𝑦𝑘

)
𝑧𝑘+1 := argmin

𝑧
𝐿𝜌

(
𝑥𝑘+1, 𝑧, 𝑦𝑘

)
𝑦𝑘+1 := 𝑦𝑘 + 𝜌

(
𝐴𝑥𝑘+1 + 𝐵𝑧𝑘+1 − 𝑐

)
.

However, the subproblems in above iteration may have no explicit solutions. Many variants

of the ADMM have been developed to address this issue. One of them, named linearized

ADMM, transforms the 𝑥 subproblem to

𝑥𝑘+1 := argmin
𝑥
(∇𝑥𝐿𝜌

(
𝑥𝑘 , 𝑧𝑘 , 𝑦𝑘

)⊤ (𝑥 − 𝑥𝑘) + 1
𝜂𝑘
∥𝑥 − 𝑥𝑘 ∥22). (2.5)

Actually, the solution of (2.5) equals to performing one step gradient descent to the original

subproblem with stepsize 𝜂𝑘 . Linearized ADMM fails when 𝑓 (𝑥) is non-differentiable. We

can utilize the linearization process only in the quadratic term ∥𝐴𝑥 + 𝐵𝑧 − 𝑐∥ and optimize

following problem:

𝑥𝑘+1 := argmin
𝑥

(
(𝜌𝐴⊤(𝐴𝑥𝑘 + 𝐵𝑧𝑘 − 𝑐 − 𝑦

𝑘

𝜌
))⊤(𝑥 − 𝑥𝑘) + 𝑓 (𝑥) + 1

𝜂𝑘
∥𝑥 − 𝑥𝑘 ∥22

)
.

It is worth mentioning that above problem is separable when 𝑓 (𝑥) owns the separable structure,

which means we can solve the problem by component. This property may simplify the problem

significantly.

6
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2.4.2 Linearized ADMM for NUM

Introducing the auxiliary variable 𝒚 = 𝑹𝒙, problem (2.1) is converted to an equivalent

form:

min
𝒙,𝒚

−
𝐾∑
𝑘=1

𝑈𝑘 (∥𝒙𝑘 ∥1)

s.t. 𝒚 = 𝑹𝒙

𝒙 ≥ 0

𝒚 ≤ 𝒄

∥𝒙𝑘 ∥0 ≤ 𝑤𝑘 ,∀𝑘.

(2.6)

The augmented Lagrangian function of above problem is

𝐿𝜌 (𝒙, 𝒚; 𝒛) = −
𝐾∑
𝑘=1

𝑈𝑘 (∥𝒙𝑘 ∥1) + 𝒛⊤(𝒚 − 𝑹𝒙) + 𝜌
2
∥𝒚 − 𝑹𝒙∥22, (2.7)

where 𝒛 is a Lagrangian multiplier vector associated with the constraint 𝒚 = 𝑹𝒙 in (2.6), and

𝜌 > 0 is a penalty parameter. The ADMM for problem in (2.6) is derived by alternatively

minimizing 𝐿𝜌 in (2.7) with respect to 𝒙 and 𝒚 with the other variables fixed. Specifically, the

iterative steps are given by

𝒙 𝑗 = arg min
𝒙∈X

𝐿𝜌 (𝒙, 𝒚 𝑗−1; 𝒛 𝑗−1)

= arg min
𝒙∈X

−
𝐾∑
𝑘=1

𝑈𝑘 (∥𝒙𝑘 ∥1) +
𝜌

2
∥𝒚 𝑗−1 − 𝑹𝒙 + 𝒛 𝑗−1

𝜌
∥2, (2.8)

𝒚 𝑗 = arg min
𝒚≤𝒄

𝐿𝜌 (𝒙 𝑗 , 𝒚; 𝒛 𝑗−1)

= arg min
𝒚≤𝒄

𝜌

2
∥𝒚 − 𝑹𝒙 𝑗 + 𝒛 𝑗−1

𝜌
∥2, (2.9)

where X = {𝒙 | 𝒙 ≥ 0, ∥𝒙𝑘 ∥0 ≤ 𝑤𝑘 ,∀𝑘}, 𝑗 is the step index, 𝒙 𝑗 = (𝒙 𝑗1; 𝒙
𝑗
2; · · · ; 𝒙

𝑗
𝐾 ), and

𝒙 𝑗𝑘 = (𝒙
𝑗
𝑘,1, 𝒙

𝑗
𝑘,2, · · · , 𝒙

𝑗
𝑘,𝑃𝑘
)⊤, 𝑘 = 1, 2, · · · , 𝐾 . After the update steps of 𝒙 and 𝒚 as above, the

update of the multiplier 𝒛 is given by

𝒛 𝑗 = 𝒛 𝑗−1 + 𝜌(𝒚 𝑗 − 𝑹𝒙 𝑗). (2.10)

The 𝒙-update subproblem is hard to solve because different blocks of 𝒙 are coupled together.

To circumvent such an issue, we linearize the quadratic term in (2.7) at 𝒙 𝑗−1 and add a proximal

7
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term:

𝒙 𝑗 = arg min
𝒙∈X

−
𝐾∑
𝑘=1

𝑈𝑘 (∥𝒙𝑘 ∥1) − 𝜌⟨𝑹⊤(𝒚 𝑗−1 − 𝑹𝒙 𝑗−1 − 𝒛 𝑗−1

𝜌
), 𝒙 − 𝒙 𝑗−1⟩ + 𝜇

2
∥𝒙 − 𝒙 𝑗−1∥22

= arg min
𝒙∈X

−
𝐾∑
𝑘=1

𝑈𝑘 (∥𝒙𝑘 ∥1) +
𝜇

2
∥𝒙 − 𝒙 𝑗−1 − 𝜌

𝜇
𝑹⊤(𝒚 𝑗−1 − 𝑹𝒙 𝑗−1 − 𝒛 𝑗−1

𝜌
)∥22. (2.11)

Now, problem (2.11) can be separated for different sources. Specifically, for the 𝑘-th source,

the update of 𝒙𝑘 is given by

𝒙 𝑗𝑘 = arg min
𝒙𝑘 ∈X𝑘

−𝑈𝑘 (∥𝒙𝑘 ∥1) +
𝜇

2
∥𝒙𝑘 − 𝝂 𝑗−1

𝑘 ∥
2
2, (2.12)

where X𝑘 = {𝒙𝑘 | 𝒙𝑘 ≥ 0, ∥𝒙𝑘 ∥0 ≤ 𝑤𝑘}, 𝝂 𝑗−1 = 𝒙 𝑗−1 + 𝜌
𝜇
𝑹⊤(𝒚 𝑗−1 − 𝑹𝒙 𝑗−1 − 𝒛 𝑗−1

𝜌
). Without

loss of generality, suppose the elements of 𝝂 𝑗−1
𝑘 = (𝜈 𝑗−1

𝑘,1 , 𝜈
𝑗−1
𝑘,2 , · · · , 𝜈

𝑗−1
𝑘,𝑃𝑘
)⊤ are in descending

order. The solution of problem in (2.12) is given by

𝑥 𝑗𝑘,𝑖 = max(0, 𝜈 𝑗−1
𝑘,𝑖 + 𝜁𝑘), where 𝜇𝑖′𝜁𝑘 = 𝑈 ′𝑘 (

𝑖′∑
𝑖=1

max(0, 𝜈 𝑗−1
𝑘,𝑖 + 𝜁𝑘)),

𝑖′ is the maximal index such that 𝑈 ′𝑘 (
∑𝑖′

𝑖=1 max(0, 𝜈 𝑗−1
𝑘,𝑖 − 𝜈

𝑗−1
𝑘,𝑖′ )) ≥ −𝜇𝜈

𝑗−1
𝑘,𝑖′ and 𝑖′ ≤ 𝑤𝑘 . For

details, one may refer to[7]. Invoking (2.3), 𝜁𝑘 can be found by solving

𝑟𝑘 −
𝛽

𝜇

1
𝑟𝑘
− 𝑠𝑘
𝜇𝐾

1
𝑟2
𝑘

=

∑𝑖′

𝑖=1 𝜈
𝑗−1
𝑘,𝑖

𝜇
(2.13)

where 𝑟𝑘 =
∑𝑖′

𝑖=1(𝜈
𝑗−1
𝑘,𝑖 + 𝜁𝑘). Since 𝛽

𝜇
> 0, 𝑠𝑘

𝜇𝐾
> 0, equation (2.13) has exactly one positive

root that can be found by Cardano’s formula[8], see Fig. 2.2. We denote the mapping between

0.5 1.0 1.5 2.0 2.5 3.0

−20

−15

−10

−5

0

x− b

x
− c

x2
, b, c > 0

any real number

图 2.2 An illustration of finding 𝜁𝑘 .
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𝜈 𝑗−1
𝑘 and 𝑥 𝑗𝑘 as

𝑥 𝑗𝑘 = C𝑘 (𝜈
𝑗−1
𝑘 ). (2.14)

The update of 𝒚 writes:

𝒚 𝑗 = arg min
𝒚≤𝒄

𝜌

2
∥𝒚 − 𝑹𝒙 𝑗 ∥22 − (𝒛 𝑗−1)⊤(𝒚 − 𝑹𝒙 𝑗). (2.15)

The solution of (2.15) is

𝒚 𝑗 = −PR𝐿+ (𝒄 − 𝑹𝒙 𝑗 − 𝒛 𝑗−1

𝜌
) + 𝒄,

where PR𝐿+ is the Euclidean projection on R𝐿+ = {(𝑥1, 𝑥2, · · · , 𝑥𝐿)⊤ | 𝑥𝑖 ⩾ 0, 𝑖 = 1, 2, · · · , 𝐿}.
Using the above results, we get the Linearized ADMM for NUM:



𝒙 𝑗𝑘 ← C𝑘 (𝝂
𝑗−1
𝑘 ), 𝑘 = 1, . . . , 𝐾,

𝒚 𝑗 ← −PR𝐿+ (𝒄 − 𝑹𝒙 𝑗 − 𝒛 𝑗−1

𝜌
) + 𝒄,

𝒛 𝑗 ← 𝒛 𝑗−1 − 𝛾𝜌(𝒚 𝑗 − 𝑹𝒙 𝑗),

𝝂 𝑗 ← 𝒙 𝑗 + 𝜌
𝜇
𝑹⊤(𝒚 𝑗 − 𝑹𝒙 𝑗 − 𝒛 𝑗

𝜌
),

(2.16a)

(2.16b)

(2.16c)

(2.16d)

where 𝛾 is the update coefficient of Lagrangian multiplier.

2.5 Linearized ADMM for MOBAC

We derive the linearized ADMM for MOBAC like the NUM. Introducing the auxiliary

variable 𝒚 = 𝑹𝒙, problem (2.2) equals to

min
𝒙

𝐾∑
𝑘=1

−𝑈𝑘 (∥𝒙𝑘 ∥1) + 𝛼max
𝑙

𝒚𝑙
𝑐𝑙

s.t. 𝒚 ≤ 𝑹𝒙

𝒚 ≤ 𝒄

∥𝒙𝑘 ∥0 ≤ 𝑤𝑘 , ∀ 𝑘

𝒙 ≥ 0,

(2.17)

The augmented Lagrangian function of above problem is

𝐿𝜌 (𝒙, 𝒚; 𝒛) = −
𝐾∑
𝑘=1

𝑈𝑘 (∥𝒙𝑘 ∥1) + 𝛼max
𝑙

𝒚𝑙
𝑐𝑙
+ 𝒛⊤(𝒚 − 𝑹𝒙) + 𝜌

2
∥𝒚 − 𝑹𝒙∥22, (2.18)

where 𝒛 is a Lagrangian multiplier vector associated with the constraint 𝒚 = 𝑹𝒙 in (2.6), and

𝜌 > 0 is a penalty parameter.

9
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The 𝒙-update of linearized ADMM for MOBAC is the same as NUM. We only consider

the 𝒚-update of linearized ADMM for MOBAC. It writes:

𝒚 𝑗+1 = arg min
𝒚∈Y

𝐿𝜌 (𝒙 𝑗+1, 𝒚; 𝒛 𝑗)

= arg min
𝒚∈Y

𝛼max
𝑙

𝑦𝑙
𝑐𝑙
+ 𝜌

2
∥𝒚 − 𝑹𝒙 𝑗+1 + 𝒛 𝑗

𝜌
∥2, (2.19)

where Y = {𝒚 | 0 ≤ 𝒚 ≤ 𝒄}. It is non-smooth and hard to obtain an explicit solution

of problem (2.19). Thus, we introduce a new variable 𝒚 = 𝑹𝒙 and consider the following

quadratic program:

min
𝑡 ,𝒚

𝜙(𝑡, 𝒚) = 𝛼𝑡 + 𝜌
2
∥𝒚 − 𝑹𝒙 𝑗+1 + 𝒛 𝑗/𝜌∥2

s.t. 𝒚 ≤ 𝑡𝒄

𝒚 ≥ 0

𝒚 ≤ 𝒄,

(2.20)

which is equivalent to problem (2.19). Define an auxiliary function

𝑦𝑙 (𝑡) =


𝜃 𝑗𝑙 , 𝑖 𝑓 0 ≤ 𝜃 𝑗𝑙 ≤ min(𝑐𝑙, 𝑡𝑐𝑙),
min(𝑐𝑙, 𝑡𝑐𝑙), 𝑖 𝑓 𝜃 𝑗𝑙 > min(𝑐𝑙, 𝑡𝑐𝑙),
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(2.21)

where 𝜽 𝑗 = 𝑹𝒙 𝑗+1 − 𝒛 𝑗/𝜌. Problem (2.20) is equivalent to

min
𝑡

Φ(𝑡) = 𝜙(𝑡, 𝒚(𝑡)) s.t. 0 ≤ 𝑡 ≤ 1, where 𝒚(𝑡) = (𝑦1(𝑡), · · · , 𝑦𝐿 (𝑡))⊤. (2.22)

Suppose 𝑡∗ is the optimal solution of problem (2.22). The solution of problem (2.20) is given

by 𝒚(𝑡∗). One may refer to[7] for detailed proof. Problem (2.21) can be tackled by optimization

methods based on function value (e.g. fminbnd in MATLAB).

10
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第三章 ADMM-Net for Network Resource Allocation

Even though the linearized ADMM can solve problem (2.1) with simple iterations and

theoretical guarantee. In practice, it usually requires hundreds of iterations to converge,

which is not entirely satisfactory for real-time decision making even with certain acceleration

techniques[9]. In this section, we introduce a novel method named Algorithm unrolling to

overcome this difficulty.

3.1 Learn to Optimize (L2O)

In recent days, a research field named learn to optimize attracts much attention[10]. This

approach aims to automate the designation of optimization algorithms. We call an optimization

problem as optimizee and an optimization algorithm as optimizer. As illustrated in Fig. 3.1,

classical optimizers are designed for a wide range of problems with particular properties.

Learn to optimize leverages machine learning to improve the performance of optimizers for

similar optimizees. The paradigm of learn to optimize is shown in Fig. 3.2. We train a L2O

optimizer offline and test it online. There are three approaches to construct a L2O optimizer:

model-free, plug-and-play (PnP), and algorithm unrolling. Model-free methods construct a

L2O optimizer from a machine learning model directly. Plug-and-play methods utilize the

modular architecture of optimizers (e.g. ADMM) and substitute the module with a learnable

model. Algorithm unrolling methods only make some predefined parameters in classical

optimizer become learnable, which preserve the original architecture.

Selected
Optimizer

Online

Classical
Optimizers

New Optimizees

图 3.1 The framework of classical algorithm

11
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Learned
Optimizer

New Optmizees

Online

Learnable 
Optimizer

 Update

Training 
Optmizees

Training Dynamics

Update

Offline

图 3.2 The framework of learn to optimize

3.1.1 Model-free

Gradient-type algorithms share a common formulation[11]:

𝑥 (𝑖) ← 𝑥 (𝑖−1) + 𝜋( 𝑓 , {𝑥 (0) , . . . , 𝑥 (𝑖−1)}), (3.1)

where 𝜋 is a functional of the objective function and past locations. In vanilla gradient descent

method, we choose:

𝜋( 𝑓 , {𝑥 (0) , . . . , 𝑥 (𝑖−1)}) = −𝛾Δ 𝑓 (𝑥 (𝑖−1)),

where 𝛾 is the stepsize. In gradient descent method with momentum, we have:

𝜋( 𝑓 , {𝑥 (0) , . . . , 𝑥 (𝑖−1)}) = −𝛾(
𝑖−1∑
𝑗=0

𝛼𝑖−1− 𝑗∇ 𝑓 (𝑥 ( 𝑗))),

where 𝛾 is the stepsize and 𝛼 is the decay coefficient. 𝜋 is actually a policy based on trajectory

and objective function value. Thus, we can model 𝜋 using reinforcement learning (RL). The

simulation results in simple examples show that this idea is quite powerful.

In[12], the authors demonstrate a method that converts the gradient descent algorithm into

long short term memory (LSTM) network, also gains much improvement. There are many

other examples of the model-free method[13][14][15]. They have a common framework and

show advantages in numerical performance. However, on the one hand, them are hard to get

theoretical results. On the other hand, most of them are based on gradient-type algorithm.

Many problems with objective functions that difficult to get gradient cannot be solved by these

methods, several iteration methods have been developed to solve such problems e.g. ADMM[6],

iterative shrinkage thresholding algorithm (ISTA) & fast iterative shrinkage thresholding al-

gorithm (FISTA)[16]. These methods find the minima of subproblems directly, do not need

to compute gradient, which makes the implementation of learning to optimize that described

above become hard.

12
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3.1.2 Plug-and-play (PnP)

ADMM is popular for solving maximum a posteriori (MAP) inverse problems. Given the

measurement 𝑦 of the ground truth 𝑥, the MAP estimation is

𝑙 (𝑥, 𝑦) + 𝛽𝑠(𝑥),

where 𝑙 is the ’distance’ between 𝑥 and 𝑦, 𝑠 is the regularization term, 𝛽 is the regular coefficient.

MAP problem equals to

min
𝑥,𝑣

𝑙 (𝑥, 𝑦) + 𝛽𝑠(𝑣), s.t. 𝑥 = 𝑣.

ADMM for above problem consists of the iterations:

𝑥 𝑗+1 ← arg min
𝑥

𝑙 (𝑥, 𝑦) + 𝜆
2 ∥𝑥 − 𝑥 𝑗 ∥22

𝑣 𝑗+1 ← arg min
𝑣

𝛽𝑠(𝑣) + 𝜆
2 ∥𝑣 − 𝑣 𝑗 ∥22

𝑢 𝑗+1 ← 𝑢 𝑗 + (𝑥 𝑗 − 𝑣 𝑗).

Treating the 𝑣-update as a functional 𝐹 from 𝛽, 𝑠, 𝑣 𝑗 , 𝜆 to 𝑣 𝑗+1, we get a high-level viewpoint

of ADMM. In ADMM for image processing problems, the 𝑣-update may be viewed as the

denoising process. However, there are many existing ad-hoc denoisers, e.g. K-SVD, BM3D,

Total Variation (TV). We can substitute the 𝑣-update with aforementioned denoisers[17]. The

numerical result shows the success of this idea. The modified ADMM outperforms the original

ADMM.

The PnP method is not connected to the L2O until the recent work[18-20]. Instead of the

manually designed denoisers, they substitute the updates with trainable models. Since PnP

owns modular structure, convergence can be guaranteed under some conditions like bounded

denoisers[21], monotone operator and constrained Lipschitz constant[22], by using the proof

technique in ADMM. Since the learnable parts in PnP is small, the training cost of PnP is

usually lower than model-free methods.

3.1.3 Algorithm Unrolling

Iterative algorithms can be viewed as a recurrent neural networks (RNN) with no train-

able parameters. A natural idea is making the predefined parameters in iterative algorithms

trainable.

In the last decade, a novel technique called algorithm unrolling has been developed. In the

seminal paper[23], the authors, for the first time, propose the approach that unrolls an iterative

algorithm into a deep neural network. It achieved great success by fixing the computational

13
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complexity to a quite small size with an acceptable approximation solution. This technique

starts a different line of work in learn to optimize.

3.1.3.1 LISTA

Consider a sparse coding problem that is classical in source coding, signal recon-

struction, pattern recognition and feature selection. There is an unknown sparse vector

𝑥∗ = [𝑥∗1, · · · , 𝑥∗𝑀 ]⊤ ∈ R𝑀 . We have its noisy linear measurements:

𝑏 =
𝑀∑
𝑚=1

𝑑𝑚𝑥
∗
𝑚 + 𝜀 = 𝐷𝑥∗ + 𝜀,

where 𝑏 ∈ R𝑁 , 𝐷 = [𝑑1, · · · , 𝑑𝑀 ] ∈ R𝑁×𝑀 is the dictionary, and 𝜀 ∈ R𝑁 is additive Gaussian

white noise. This is an undetermined system with 𝑁 ≦ 𝑀 . The expensive inference algorithms

prohibits it real-time applications. A popular approach is least absolute shrinkage and selection

operator (LASSO):

min
𝑥

1
2
∥𝑏 − 𝐷𝑥∥22 + 𝜆∥𝑥∥1, where 𝑏 = 𝐷𝑥∗ + 𝜀.

Iterative shrinkage thresholding algorithm (ISTA) is a general solution for LASSO, it performs:

𝑥𝑘+1 = 𝜂𝜆/𝐿 (𝑥𝑘 +
1
𝐿
𝐷⊤(𝑏 − 𝐷𝑥𝑘)), 𝑘 = 0, 1, 2, . . . ,

where 𝜂𝜃 (𝑥) = sign(𝑥)max(0, |𝑥 | − 𝜃) and 𝐿 is usually taken as the largest eigenvalue of 𝐷⊤𝐷,

𝜆 is a hyper parameter. Let𝑊1 = 1
𝐿
𝐷⊤,𝑊2 = 𝐼 − 1

𝐿
𝐷⊤𝐷, 𝜃 = 1

𝐿
𝜆. ISTA can be written as

𝑥𝑘+1 = 𝜂𝜃 (𝑊1𝑏 +𝑊2𝑥
𝑘).

Note the ISTA can be recognized as a RNN with no learnable weights, see Fig. 3.3. We can

untie the weights in different steps and make them learnable:

𝑥𝑘+1 = 𝜂𝜃𝑘 (𝑊 𝑘
1 𝑏 +𝑊 𝑘

2 𝑥
𝑘), 𝑘 = 1, 2, · · · , 𝐾 − 1.

We call this model as learned ISTA (LISTA)[23], see Fig. 3.4. LISTA has the trainable weights

Θ = {𝑊 𝑘
1 ,𝑊

𝑘
2 , 𝜃

𝑘}𝐾𝑘=1. Invoking the origin of LISTA, we can make only 𝑊1 = 𝑊 = 1
𝐿
𝐷⊤

learnable and let 𝑊2 = 𝐼 − 𝑊𝐷. Since 𝑁 ≦ 𝑀 , this approach will reduce the memory

significantly:

𝑥𝑘+1 = 𝜂𝜃𝑘 (𝑥𝑘 +𝑊 𝑘 (𝑏 − 𝐷𝑥𝑘)), 𝑘 = 1, 2, · · · , 𝐾 − 1,

where the learnable parameters are Θ = {𝜃𝑘 ,𝑊 𝑘}𝐾𝑘=1. This variant of LISTA is named LISTA

with coupling weights (LISTA-CP). The necessary condition for the convergence of LISTA

14
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图 3.3 RNN Structure of
ISTA 图 3.4 Unrolled Learned ISTA Network

表 3.1 Summary: variants of LISTA and the number of parameters to learn.

LISTA LISTA-CP TiLISTA ALISTA
𝑂

(
𝐾𝑀2 + 𝐾 + 𝐾𝑀𝑁

)
𝑂 (𝐾𝑁𝑀 + 𝐾) 𝑂 (𝑁𝑀 + 𝐾) 𝑂 (𝐾)

has been proved[24]:

𝜃𝑘 → 0, 𝑊 𝑘
2 − (𝐼 −𝑊 𝑘

1 𝐷) → 0, as 𝑘 →∞,

which provides the theoretical equivalence of LISTA and LISTA-CP. The further work[25]

proposes an analysis that reduces the size of learnable parameters. Based on the LISTA-CP,

we can tie the weights in different steps and result in tied LISTA (TiLISTA):

𝑥𝑘+1 = 𝜂𝜃𝑘 (𝑥𝑘 + 𝛾𝑘𝑊 (𝑏 − 𝐷𝑥𝑘)), 𝑘 = 1, 2, · · · , 𝐾 − 1

with learnable parameters Θ = {𝜃𝑘 , 𝛾𝑘}𝐾𝑘=1 ∪𝑊 . The 𝑊 actually aims to solve the following

problem[25]:

�̃�(𝐷) = inf
𝑊 ∈R𝑁×𝑀
𝑊 ⊤:,𝑖𝐷:,𝑖=1

{ max
𝑖≠ 𝑗

1≤𝑖, 𝑗≤𝑀

𝑊⊤:,𝑖𝐷 :, 𝑗}. (3.2)

This is a linear program with a piece-wise linear objective function and linear constraints.

Since it is feasible, and

0 ≤ �̃�(𝐷) ≤ max
𝑖≠ 𝑗

1≤𝑖, 𝑗≤𝑀

𝐷⊤𝑖 𝐷 𝑗 .

�̃� is bounded, there exists optimal solution. We denote the solution set of the problem (3.2)

as W(𝐷) =
{
𝑊 ∈ R𝑁×𝑀 : 𝑊 attains the infimum

}
. Substituting the 𝑊 in TiLISTA with a

solution �̃� ∈ W(𝐷), we get the analytic LISTA (ALISTA):

𝑥𝑘+1 = 𝜂𝜃𝑘 (𝑥𝑘 + 𝛾𝑘�̃� (𝑏 − 𝐷𝑥𝑘)), 𝑘 = 1, 2, · · · , 𝐾 − 1

with the only learnable parameters Θ = {𝛾𝑘 , 𝜃𝑘}𝐾𝑘=1. For each model, 𝑥𝐾 depends on Θ, 𝑏, 𝑥0.

Denote 𝑥𝐾 as 𝑥𝐾 (Θ, 𝑏, 𝑥0). Given the distribution of 𝑏, 𝑥∗, we train the model by solving the
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optimization problem:

min
Θ
E(𝑏,𝑥∗) ∥𝑥𝐾 (Θ, 𝑏, 𝑥0) − 𝑥∗∥22.

Stochastic gradient descent (SGD) can be applied to solve this minimization problem. The

gradient w.r.t. 𝑥𝐾 onΘ are obtained with the chain rule. The difficulties of training RNNs make

us adopt layer-wise training in practical[26]. Theoretical linear convergence has been proved

both for the models. Numerical experiments reveal the fact that the reduction of learnable

parameters (see Tab. 3.1) would not influent the convergence rate of the models, see Fig. 3.5.

图 3.5 NMSE = 10 log10 (
E∥𝑥𝐾 (Θ)−𝑥∗ ∥2
E∥𝑥∗ ∥2 )

3.1.3.2 ADMM-Net

Inspired by the success of LISTA,[27] first applies the unrolling technique in ADMM in

a mixed sparse model. The result indicates that unrolling technique is compatible. Since

ADMM is widely adopted in image processing. The researchers have proposed many versions

of ADMM-based deep unrolling algorithm.

Consider a compressive sensing magnetic resonance imaging (CS-MRI) problem. As-

sume 𝑥 ∈ C𝑁 is an MRI image to be reconstructed, 𝑦 ∈ C𝑁 ′ (𝑁 ′ < 𝑁) is the under-sampled

data. The reconstructed image can be estimated by solving:

𝑥 = arg min
𝑥
{1
2
∥𝐴𝑥 − 𝑦∥22 +

𝐿∑
𝑙=1

𝜆𝑙𝑔(𝐷𝑙𝑥)},

where 𝐴 = 𝑃𝐹 ∈ R𝑁 ′×𝑁 is a measurement matrix, 𝑃 ∈ R𝑁 ′×𝑁 is a under-sampling matrix,

and 𝐹 is a Fourier transform. 𝐷𝑙 denotes a transform matrix for a filtering operation. 𝑔(·)
is a regularization function. 𝜆𝑙 is a regularization parameter. Introduce auxiliary variables
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𝑧 = {𝑧1, 𝑧2, · · · , 𝑧𝐿}, above problem equals to:

min
𝑥,𝑧

1
2
∥𝐴𝑥 − 𝑦∥22 +

𝐿∑
𝑙=1

𝜆𝑙𝑔(𝑧𝑙) s.t. 𝑧𝑙 = 𝐷𝑙𝑥, 𝑙 = 1, 2, · · · , 𝐿.

The augmented Lagrangian function is:

𝐿𝜌 (𝑥, 𝑧, 𝛼) =
1
2
∥𝐴𝑥 − 𝑦∥22 +

𝐿∑
𝑙=1

𝜆𝑙𝑔(𝑧𝑙) −
𝐿∑
𝑙=1

⟨𝛼𝑙, 𝑧𝑙 − 𝐷𝑙𝑥⟩

+
𝐿∑
𝑙=1

𝜌𝑙
2
∥𝑧𝑙 − 𝐷𝑙𝑥∥22,

where 𝛼 = {𝛼𝑙} are Lagrangian multipliers and 𝜌 = {𝜌𝑙} are penalty parameters.

We alternatively optimizes {𝑥, 𝑧, 𝛼} and substitute 𝐴 = 𝑃𝐹, 𝛽𝑙 =
𝛼𝑙
𝜌𝑙

:
𝑥𝑛 = 𝐹⊤𝐺−1 [𝑃⊤𝑦 +

𝐿∑
𝑙=1

𝜌𝑙𝐹𝐷
⊤
𝑙 (𝑧𝑛−1

𝑙 − 𝛽𝑛−1
𝑙 )]

𝑧𝑛𝑙 = 𝑆(𝐷𝑙𝑥𝑛 + 𝛽𝑛−1
𝑙 ;𝜆𝑙/𝜌𝑙)

𝛽𝑛𝑙 = 𝛽
𝑛−1
𝑙 + 𝜂𝑙 (𝐷𝑙𝑥𝑛 − 𝑧𝑛𝑙 )

where 𝐺 = 𝑃⊤𝑃 + ∑𝐿
𝑙=1 𝜌𝑙𝐹𝐷

⊤
𝑙 𝐷𝑙𝐹

⊤, 𝑆(·) is a nonlinear shrinkage function, 𝜂𝑙 is an update

rate. But ADMM needs to run dozens of iterations to get a satisfactory result. It is also

challenging to choose the transform 𝐷𝑙 and shrinkage function 𝑆(·) for general regularization

function 𝑔(·). For different data, tuning the parameters 𝜌𝑙 and 𝜂𝑙 is not trivial. The data flow

of ADMM (Fig. 3.6) encourages us to unroll the ADMM and use machine learning to address

these issues. Due to the similarity of LISTA and ADMM-Net, we omit the unrolling details of

stage n

Sampling data
in k-space

Reconstructed
MR image 

(Ns+1)

X
(1)
X

(n−1)
X

(n−1)
C

(n)
X

(n)
C

(n−1)
M

(n)

M
(n+1)
M

(n−1)
S

(n)
S X

(n+1)

S
(n+1)

C
(n+1)

图 3.6 The data flow graph for the ADMM. This graph consists of four types of nodes:
reconstruction (X), convolution (C), non-linear transform (Z), and multiplier update (M).

ADMM-Net here. The deep ADMM-Net for compressive sensing[28] outperforms the existing

methods, this work shows the potential of deep unrolling ADMM, the further work[29] exploits

the architecture used to approximate additive layer and gains better performance. The work

in[30] present an enlightenment idea that comes from statistical perspective, using a function

to composite the terms in proximal term of ISTA. Based on this idea, the authors successfully

17
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establish a more general network compare to[29]. It is worth mentioning that the proposed

network in[30] outperforms[29] in compressive sensing tasks with a much simpler architecture,

which shows the power of the idea. Since linearization tricks often be adopted in ADMM, the

deep unrolling version of linearized ADMM (D-LADMM)[31] extends the area of unrolling

technique and provides the convergence proof using variational inequality[32].

There are numerous papers aim to exploit the potential of deep unrolling, for more results

in image and signal processing, one can refer to[33], this paper reviews the previous notable work

and explains the three advantages of deep unrolling—fast, interpretability and generalizability.

For more results in communication systems, one may refer to[34] and[35],[35] represents a type

of work that apply deep learning (DL) in Weighted Minimize Mean Square Error (WMMSE),

however, this work has no guarantee for convergence.

3.2 ADMM-Net for Network Resource Allocation

In this section, we describe the details of unrolling the ADMM for NUM, say equations

(2.16), into a deep neural network (DNN). Then, we use the Moreau envelope[36] to derive the

backward of 𝒚-update in MOBAC and give the ADMM-Net for MOBAC. We first realize the

Recurrent Neural Network (RNN) structure of ADMM, then unroll the RNN to get ADMM-

Net.

RNN structure of ADMM ADMM is an iteration algorithm. As shown in the Fig. 3.7,

its data flow graph has a recurrent structure. From the perspective of Deep Learning (DL),

x0 y0

z0

ν0 x1 y1

z1

ν1 x2 y2

z2

ν2 x3 y3

z3

ν3 x4

图 3.7 Data flow graph of ADMM, where 𝒙0, 𝒚0, 𝒛0 are fixed initial values, 𝒔 is the input.

ADMM is a RNN with non-trainable weights. A natural question that arises here is can we

parameterize some constants in (2.16) to get trainable weights?

ADMM-Net1 To get a DNN with trainable weights, we parameterize several matrices in

(2.16) to make them learnable, then change the corresponding operations to make them com-

patible with the weights. Finally, we terminate the process after 𝑇-th update.

18



第三章 ADMM-Net for Network Resource Allocation

We use⊙, ⊘ to represent element wise multiplication and division, respectively. Prewisely,

at 𝑗-th update, we substitute the first 𝑹 in (2.16d) with weight 𝑾 𝑗 . To gain more freedom, we

substitute the scalar 1
𝜌

with 𝜎 𝑗 , where 𝜎 is a 𝑛-dimension vector. Naturally, we apply element

wise operations to replace their corresponding scalar version. We introduce the 𝑛-dimension

threshold vector 𝒕 𝑗 and add it to the variable inside proximal mapping of (2.16b) to adjust the

threshold of proximal mapping. Adopting the Cardano’s formula in (2.16), we get the first

version of deep unrolling ADMM:



𝒙 𝑗𝑘 ← C𝑘 (𝝂
𝑗−1
𝑘 ), 𝑘 = 1, . . . , 𝐾,

𝒚 𝑗 ← −PR𝐿+ (𝑹𝒙
𝑗 − 𝜎 ⊙ 𝒛 𝑗−1 + 𝒕 𝑗) + 𝒄,

𝒛 𝑗 ← 𝒛 𝑗−1 − 𝛾(𝒚 𝑗 − 𝑹𝒙 𝑗) ⊘ 𝜎 𝑗 ,

𝝂 𝑗 ← 𝒙 𝑗 + 𝜌
𝜇
(𝑾 𝑗)⊤(𝒚 𝑗 − 𝑹𝒙 𝑗 − 𝜎 ⊙ 𝒛 𝑗),

(3.3a)

(3.3b)

(3.3c)

(3.3d)

where Θ = {𝑾 𝑗 , 𝜎 𝑗 , 𝒕 𝑗}𝑇𝑗=1 are the trainable weights. We use 𝑥 𝑗 (𝒔; {𝑾 𝜏 , 𝜎𝜏 , 𝒕𝜏} 𝑗−1
𝜏=1) to denote

the output of ADMM-Net1 at 𝑗-th layer. A typical layer of ADMM-Net1 is shown in Fig. 3.8.

zj−1

νj−1 xjk ← C(ν
j−1
k ),∀k

yj ← −PRL
+
(Rxj − σ � zj−1 + tj) + c

zj ← zj−1 − γ(yj −Rxj)� σj

νj ← xj + ρ
µ (W

j)>(yj −Rxj − σ � zj)

图 3.8 A typical layer of ADMM-Net.

ADMM-Net2 The Cardano’s formula in (2.14) is actually a special case of proximal mapping.

Consider the general cubic equation

𝑥3 + 𝑎𝑥2 − 𝑏𝑥 − 𝑐 = 0⇔ 𝑥 − 𝑏
𝑥
− 𝑐

𝑥2 = −𝑎, (3.4)

where 𝑏, 𝑐 > 0. Fixing 𝑏, 𝑐, denote the only positive root of (3.4) as 𝑟 (𝑎). As illustrated in

Fig. 2.2, we have

𝑟 (𝑎) → 0, as 𝑎 → +∞,

𝑟 (𝑎) → −𝑎, as 𝑎 → −∞.
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This fact inspires us to use a single branch of the rotated hyperbola to approximate it. Since

the asymptotes are fixed, we have the fixed eccentricity. Notice that our aim is approximating

C𝑘 in finite interval, we use three parameters to control this process, the first one is the shape

parameter 𝜆𝑘 , others are translation parameters 𝑚𝑘 , 𝑛𝑘 corresponding to 𝑥 axis and 𝑦 axis,

respectively.

[(𝑎 + 𝑚𝑘) + (𝑦 + 𝑛𝑘)] (𝑦 + 𝑛𝑘) = 𝜆𝑘 ⇒ 𝑦 =

√
(𝑎 + 𝑚𝑘)2

4
+ 𝜆𝑘 −

𝑎 + 𝑚𝑘

2
− 𝑛𝑘 . (3.5)

The numerical result in Fig. 3.9 indicates that our method is reasonable.
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图 3.9 Set 𝑏 = −104, 𝑐 = −106, vary the parameter 𝑎 from −103 to 103, the only positive root
calculated by Cardano’s formula and the value of our approximation.

Denote the approximation 𝑦 as A(·;𝜆𝑘 , 𝑚𝑘 , 𝑛𝑘), where 𝜆𝑘 , 𝑚𝑘 , 𝑛𝑘 are learnable param-

eters. Substituting C𝑘 (·) with A(·;𝜆𝑘 , 𝑚𝑘 , 𝑛𝑘) in (3.3a), we get the second version of deep

unrolling ADMM (dubbed as ADMM-Net2). A typical layer of ADMM-Net2 is



𝒙 𝑗𝑘 ← A(𝝂
𝑗−1
𝑘 ;𝜆𝑘 , 𝑚𝑘 , 𝑛𝑘), 𝑘 = 1, . . . , 𝐾,

𝒚 𝑗 ← −PR𝐿+ (𝑹𝒙
𝑗 − 𝜎 ⊙ 𝒛 𝑗−1 + 𝒕 𝑗) + 𝒄,

𝒛 𝑗 ← 𝒛 𝑗−1 − 𝛾(𝒚 𝑗 − 𝑹𝒙 𝑗) ⊘ 𝜎 𝑗 ,

𝝂 𝑗 ← 𝒙 𝑗 + 𝜌
𝜇
(𝑾 𝑗)⊤(𝒚 𝑗 − 𝑹𝒙 𝑗 − 𝜎 ⊙ 𝒛 𝑗),

(3.6a)

(3.6b)

(3.6c)

(3.6d)
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whereΘ = {𝑾 𝑗 , 𝜎 𝑗 , 𝒕 𝑗}𝑇𝑗=1∪{𝜆𝑘 , 𝑚𝑘 , 𝑛𝑘}𝐾𝑘=1 are the trainable weights. 𝑥 𝑗 (𝒔; {𝑾 𝜏 , 𝜎𝜏 , 𝒕𝜏} 𝑗−1
𝜏=1∪

{𝜆𝑘 , 𝑚𝑘 , 𝑛𝑘}𝐾𝑘=1) is the output of ADMM-Net2 at 𝑗-th layer.

ADMM-Net for MOBAC Recall the ADMM-Net for NUM, the output is differentiable with

respect to the input in each layer. However, the autograd meets its limit when comes to the

𝑦-update of the MOBAC. In the 𝑦-update, we get the output by solving a quadratic program,

which has no closed form solution. Differentiable optimization[37, 38] provides a method to

tackle this problem. But it needs to involve a package in the code. Utilizing the property of

the Moreau envelope may give a simpler and lightweight solution.

Given a non-smooth function 𝑓 , the Moreau envelope is given by

𝑓𝜇 (𝑥) = inf
𝑦
{ 𝑓 (𝑦) + 1

2𝜇
∥𝑥 − 𝑦∥22}.

We note that dom 𝑓𝜇 (𝑥) = R𝑛, and that 𝑓𝜇 (𝑥) is convex. When 𝑓 (𝑥) = |𝑥 |, the Moreau envelope

is the Huber function:

𝑓𝜇 (𝑥) = inf
𝑦

{
|𝑦 | + 1

2𝜇
(𝑥 − 𝑦)2

}
=

{
1

2𝜇𝑥
2, |𝑥 | ≤ 𝜇,

|𝑥 | − 𝜇
2 , |𝑥 | > 𝜇.

𝑓𝜇 (𝑥) can be written as

𝑓𝜇 (𝑥) =
1

2𝜇
∥𝑥∥2 − 1

𝜇
sup
𝑦

{
𝑥𝑇 𝑦 − 𝜇 𝑓 (𝑦) − 1

2
∥𝑦∥2

}
=

1
2𝜇
∥𝑥∥2 − 1

𝜇

(
𝜇 𝑓 + 1

2
∥ · ∥2

)∗
(𝑥).

Therefore, the derivation of 𝑓𝜇 (𝑥) is given by

∇ 𝑓𝜇 (𝑥) =
𝑥

𝜇
− 1
𝜇

argmax
𝑦

{
𝑥𝑇 𝑦 − 𝜇 𝑓 (𝑦) − 1

2
∥𝑦∥2

}
=

1
𝜇

(
𝑥 − prox𝜇 𝑓 (𝑥)

)
In the final step, we use the important point that the gradient of the conjugate function 𝑓 ∗(𝑥)
equals to the optimal 𝑦∗ at which 𝑓 ∗(𝑥) = sup𝑦∈dom( 𝑓 ) 𝑥

𝑇 𝑦 − 𝑓 (𝑦) is achieved.

Substituting 𝑓 (𝑦) = max𝑙 𝑦𝑙/𝑐𝑙, 𝜇 = 1/𝜌, the 𝑦-update can be written as 𝑓𝜇 (𝜽 𝑗) which is

a mapping from 𝜽 𝑗 = 𝑹𝒙 𝑗+1 − 𝒛 𝑗/𝜌 into 𝒚 𝑗+1. We have:

𝜕𝒚 𝑗+1

𝜕𝜽 𝑗
= ∇ 𝑓𝜇 (𝜽 𝑗) = 𝜌(𝜽 𝑗 − 𝒚 𝑗+1).

Thus, we can calculate the derivative using the customized backward. The ADMM-Net

for MOBAC is the same as the ADMM-Net for NUM except the 𝑦-update is replaced by a layer
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using quadratic program to forward and Moreau envelope to backward.

3.2.1 Training Strategy

Given a flow distribution 𝒔, we denote the solution by linearized ADMM for NUM or

MOBAC as 𝒙∗(𝑠). Define the normalized square error between ADMM-Net and 𝒙∗(𝑠) as

ℓ(𝒙𝑇 (𝒔;Θ), 𝒙∗(𝒔)) = ∥𝒙
𝑇 (𝒔;Θ) − 𝒙∗(𝒔)∥2
∥𝒙∗(𝒔)∥2

,

where the version of the ADMM-Net is determined by Θ, 𝑇 is the number of layers. The loss

function is defined as:

L(Θ) = E(𝒔,𝒙∗)∼Γℓ(𝒙𝑇 (𝒔;Θ), 𝒙∗(𝒔)) + 𝜆𝑟 (Θ), (3.7)

where Γ is the training set, 𝑟 is the regular term for parameters, 𝜆 is the regular coefficient. In

our implementation, we choose 𝑟 as ℓ1 norm to guarantee the sparsity of the weights.
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第四章 Numerical Experiment

In this section, we perform the numerical simulation to illustrate the performance gain

of our two versions of deep unfolding ADMM. We first consider a baseline given by classical

linearized ADMM, then compare ADMM-Net1 and ADMM-Net2 in various standards.

4.1 Data set Descriptions

Small Example In order to get ground-truth solution, we set

• number of links: 𝐿 = 5,

• number of flows: 𝐾 = 6,

• capacity of links: 𝒄 = (1024, 10240, 10240, 40960, 102400)⊤,
• the number of available paths: 𝑃 = [1, 1, 1, 1, 1, 1]⊤,
• the constraint of available paths: 𝑊 = [1, 1, 1, 1, 1, 1]⊤,
• routing matrix:

𝑹 =



0 0 0 0 1 1

0 1 0 1 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 0 1 0 0 0


.

Large Example In this scenario, the classical ADMM only give suboptimal solution, thus

the training strategy has systematic error. We set

• number of links: 𝐿 = 460,

• number of flows: 𝐾 = 561,

• capacity of links: the distribution of 𝒄 is given in Fig. 4.1

• 𝑃 and𝑊 are pre defined in the code according to the real world records.

• routing matrix: we generate 𝑹 using sprand(L, K) in MATLAB, then set the nonzero

elements to 1.

The flow size is generated from gaussian distribution in two examples, which means

𝑠 ∼ N(𝛿,Σ), where 𝛿 ∈ R𝐾 is the mean value vector and Σ ∈ R𝐾×𝐾 is the correlation matrix.

In our setting, 𝛿 = 0𝐾 ,Σ = 𝐼𝐾×𝐾 , where 𝐼 is identical matrix.

We first sample a flow size 𝑠 from N(0𝐾 , 𝐼𝐾×𝐾 ), then run classic ADMM to get ground-
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图 4.1 The cumulative distribution function of link capacity.

truth solution 𝒙𝑔𝑡 , repeat this process 𝑛train + 𝑛test times, where 𝑛train is the number of pairs

contained in training set and 𝑛test is the number of pairs contained in testing set.

4.1.1 Parameters Setting

In this section, we compare ADMM-Net1 and ADMM-Net2 in several performance

measures. Our simulation is performed in MATLAB on a PC with an Intel Core i7 at 2.3GHz

and 16GB of memory. For the parameters in our objective function, 𝛽 is set to be 0.05. In the

classical ADMM, we adjust the parameter 𝜌 according to the Section 3.4 .1 in[6], and set the

parameter 𝜇 = 1.1× 𝜌∥𝑹∥22. In the 𝒛 -update, we take an additional step length with 𝛾 = 1.618,

which demonstrates better convergence performance. We set the maximal iteration number to

20000, and adopt following stopping criteria:

• primal residual:

∥𝒚 𝑗 − 𝑹𝒙 𝑗 ∥2 ≤
√
𝐿𝜖 abs + 𝜖 rel max{∥𝒚 𝑗 ∥2, ∥𝑹𝒙 𝑗 ∥2},

• dual residual:

∥𝜌𝑹⊤(𝒚 𝑗 − 𝒚 𝑗−1)∥2 ≤
√
𝑃𝜖 abs + 𝜖 rel∥𝑹⊤𝒛 𝑗 ∥2,

• constraint violation:

∥max(𝑹𝒙 − 𝒄, 0)∥2/max(
√
𝐿, ∥𝒄∥2) ≤ 𝜖 tol,

where we set 𝜖 abs = 10−6, 𝜖 rel = 10−6, and 𝜖 tol = 10−10. We utilize
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• the averaged normalized root mean square error (NRMSE), which indicates the loss

between output and ground-truth solution,

𝐸 (Θ) = 1
|Γ|

∑
(𝑠,𝒙𝑔𝑡 ) ∈Γ

∥�̂�(𝑠,Θ) − 𝒙𝑔𝑡 ∥2
∥𝒙𝑔𝑡 ∥2

,

where Γ denotes testing set.

• the total completion time, namely delay

delay =
𝐾∑
𝑘=1

𝑠𝑘
∥𝒙𝑘 ∥1

,

• the proportional fairness,

fairness = 𝛽
𝐾∑
𝑘=1

log(∥𝒙𝑘 ∥1),

• the maximal (say the worst-case) link utilization ratio,

load = max
𝑙

𝑹[𝑙]𝒙
𝒄𝑙

,

• the objective function value in NUM problem,

obj = total − fairness,

as performance measures, all of them are averaged over testing set in practice.

4.1.2 Performance Comparison

表 4.1 classical ADMM vs deep unrolling ADMM in small example.

method loss obj delay fairness load iteration/layers
ADMM 0 -0.619 1.944 2.563 1.00 3207

ADMM-Net1 0.026 -2.389 0.298 2.687 31.45 1
ADMM-Net2 0.072 0.645 3.230 2.585 1.00 1
ADMM-Net1 0.022 -2.358 0.328 2.686 35.73 3
ADMM-Net2 0.074 0.589 3.179 2.590 1.05 3

表 4.2 classical ADMM vs deep unrolling ADMM in large example.

method loss obj delay fairness load iteration/layers
ADMM 0 -183.355 4.377 187.732 1.00 20000

ADMM-Net1 0.152 -185.756 5.218 190.802 3.344 2
ADMM-Net2 0.249 -164.463 24.378 188.840 1.01 2
ADMM-Net1 0.128 -185.920 4.898 190.818 3.573 3
ADMM-Net2 0.248 -164.400 24.286 188.891 1.01 3
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Our nets reduce the computational complexity significantly. In both examples, we attain

the approximate solution in with only 3 layers, which is equivalent to 3 iterations in classical

ADMM. However, the main drawback is that we can not beats the classical ADMM in all

performance measures at one model. ADMM-Net1 gives a load larger than 1. ADMM-Net2

is too conservative and give a higher delay than the classical ADMM. Our future work is

constructing a new model to address this issue.

Another interesting observation is that ADMM-Net could give a fast approximate solution,

but if we want to get a precise result, which means converge to the solution derived by traditional

methods, the architecture of network become untrainable. However, when we pay attention

to the convergence process of ADMM, see Fig 4.2. We find the distance between iterative

solution and true solution decrease sharply. Besides, the approximate solution produced by

ADMM-Net acctually attain the relative error of 10−2, which is the point that the curve in

Fig 4.2 begin to decrease sharply.

Above observations implies an idea: Can we treat the ADMM-Net as a good warm-start

solver and concatenate it with ADMM? The answer is yes, we generate a new network by mixing

these methods, the convergence process is in Fig 4.2. It is quite stimulating, we successfully

combine the convergence feature of ADMM and fast approximation of ADMM-Net.
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图 4.2 The convergence process of mixed ADMM-Net, where 𝐿 (Θ) = 1
|Γ |

∑
ℓ( 𝑓 (𝒔;Θ), 𝒙gt(𝒔)).
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第五章 Conclusions

In this paper, we give several methods for network resource allocation. The linearized

ADMM has the simplest form. But it requires dozens of iterations. This drawback prohibits

the application of linearized ADMM. We want to accelerate the linearized ADMM to meets

real-time needs. An acceleration method is utilizing learn to optimize. We introduce the

three paradigms in L2O. The most suitable method for linearized ADMM is algorithm un-

rolling. Thus, we construct two ADMM-Nets based on the linearized ADMM. The numerical

performance indicates the success of the unrolling. However, the theoretical perspective of

ADMM-Nets is still not clear. Unlike the LISTA, we do not understand the learned weights in

our nets and how to reduce the memory further. Besides theory, the numerical performance

is also can be improved. For instance, can we combine the two ADMM-Nets to reduce both

delay and load in one model? Can we utilize the Plug-and-Play to construct an implicit utility

function and train it in different datasets?
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