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Linear Inverse Problem

m Formulation:
y=Az+w, w~N (01,

where A is a known block-diagonal matrix, and w denotes
Gaussian random vector with mean 0 and covariance o21.

m Aim: Recovery x from y.

m Application: Magnetic Resonance Imaging (MRI).



Signal Recovery and Denoising

m The maximum likelihood (ML) estimate:
-~ A
T = argmax p(y | x),
x

where p(y | ), the probability density of y conditioned on
x, is known as the likelihood function.

m The equivalent form:
Ty = argmin{—Inp(y | )}.
x

m In the case of additive white Gaussian noise (AWGN)
N (0,0’21), we have

—Inp(y | ) = ly — Az||3 + const.
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Maximum A Posteriori (MAP)

m Since A is fat, we can not perform least-squares estimation.

Use a regularization term ¢(x) to encodes priori knowledge:

~ . 1
& = anguin {57 |y~ Aalf + o(e) .
- 20
m Bayes rule implies

Inp(z |y)=Inp(y | )+ Inp(z) — Inp(y).

m The maximum a posteriori (MAP) estimate:
ZTmap = argmin{—Inp(y | ) — Inp(x)}.
r

m T can be recognized as Tmap With p(x) o< exp(—¢(x)).



More on ¢(x)

m ¢(x) should mimic the negative log of the prior density.
m ¢(x) must enable tractable optimization.
m Common choice: ¢(x) = \||¥x|/1, where UT¥ =T, A > 0.

m Advantages:
The problem remains convex.
The transform output Wz is sparse.



Denoising

m When A = I, the linear inverse problem reduces to
z=x+w, w~/\/(0,02I).

Recovering & from noisy z is known as denoising.
m State-of-the-art approaches are either algorithmic or neural.

m Can these state-of-the-art denoisers be leveraged for MRI?



PnP-ADMM

m T can be derived from an equivalent optimization

~ . 1
(z,v) = argmin ﬁ”y — Az|j3 + ¢(v), st x=w.
o

x,veER”
m The augmented Lagrangian:
L(@, v \) = = lly — Axll} + 6(v) - X'(z — v) + |1z — ]}
s Uy 20_2 2 277 2
1 1
= @Hy — Az + ¢(v) + %Hw — v+ ulf3,

where u = nA.



ADMM

Alternating the optimization of @, v with gradient ascent of wu:

zp = h (v_1 — wp_1;0%/n)
Vi, = Prox, (Tg + ur—1;1)

up = up—1 + (T — vg)
where

. 1
prox(z; ) £ argmin (@) + [z — z||?,
xrcR™ n

1 1
h(zio*/n) 2 argmin 5 glly — Aw| + 5z — =]

pISING
2

2 —1
- (ATA + UI) <ATy + 0z> .
n n



PnP-ADMM

m prox,(z;7) can be recognized as the MAP denoiser of z.
m PnP plug in a image denoiser in place of the prox,(z;n).
m Denoting the denoiser as f(-;n), PnP-ADMM writes:

zp = h (v_1 — up_1;0%/n)

v = f (T +up_1;7)

up = up—1 + (T — Vi)
m The fixed point of the ADMM is independent of n, while n
affects the fixed-point of the PnP-ADMM.
To promote the PnP-ADMM, we untie the parameters:

xr =h (ve_1 — uk—_1; i)
v = f(xp + up—1;7%)
up = up—1 + () — i)



Discussion: The Effects of the Denoising Strength n

NMSE (dB)
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Figure: The normalized mean-squared error (NMSE) versus iteration.
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The Effects of the Denoising Strength 7y,

PSNR (dB)
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RL Formulation for Automated Parameter Selection

m Motivation: 7, u affect the result of the PnP-ADMM.
m Manually tuned parameters are time-cost.

m Aim: automatically select

7 and (7707M077717M17 to 7777—17MT—1)

to recover x, that close to x.

m Tool: Reinforcement Learning (RL).



Markov decision process (MDP) (S, A, p, )

State space S: any feasible value of (xy, vk, uk).

Action space A: any feasible value of 7 and (g, nx)-
Transition function p: S x A — S

several iterations of the PnP-ADMM.
Reward function r: S x A = R

7 (st,ar) = [C(p(st,ar)) — C(se)] — .

¢ (s¢): the PSNR of the recovered image at step t.
n: penalizing the policy as it does not terminate at step t.



Workflow of TFPnP
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Figure: Workflow of the TFPnP instantiated by the PnP-ADMM.



Formal Definition of the Goal

s = (Tk, Vg, Uk), ag = (ag1,ar2), 7k = (5K, ag).
a2 = (Wk,Mk). a1 is a boolean that terminates the iterate
at step k when a1 = 0 and versus verse.

Trajectory: T = {so,a0,70, "+ , SN, AN, TN}
m Given T and p € [0, 1], define the return as

N—t

tl
Ry = E Prr (St rgrr) -
=0

m Goal: learn a policy 7 to maximize

J(m) =Es »[Ro], m(a]|s):SxA—]0,1].



RL-based Policy Learning

m State-value function:
V7(s) = Ex [Ro | so = s
m Action-value function:
Q" (s,a) =Ex [Ro | so = s,a0 = a]

m Policy: m = (w1, m2).
m1: a stochastic policy that generate a; 1 to decide
whether to terminate.
my: a deterministic policy that generate a; 2.



Actor-critic Framework

m Policy network (actor): mp = (71, m2) with 6 = (61, 62).
m1(-]s): § x{0,1} — [0, 1], controlled by 6.
ma(s): S — A, controlled by 6s.

m Value network (critic): V' (s;).

Train the value network:

1 - - 2
L¢ = Est,awﬂg(s) |:2 <7’(8, CL) + PYVJ) (]3(8, a)) - V¢ (3)) :|
m Model-free training of 7y:

Vé‘lJ (779) = ESNB,GNTI'Q(S) [V91 log ™ ((11 | 5) Aﬂ(sv (L)]

m Model-based training of mo:

Vo, J (7T9) = ESNB,aNTrg(s) [v@QW(S, a)v927r2(8)]



Training Scheme

Algorithm 1 Training Scheme

Require: Image dataset D, degradation operator g(-), learning
rates lg, s, weight parameter j3.
1: Initialize network parameters 6, ¢, </3 and state buffer B.
2: for each training iteration do
3:  sample initial state so from D via g(-)

4:  for environment step ¢ € [0, N) do
5: ag ~ Wg(at‘st)
6: Sep1 ~ p(seralse, ar)
T B+ BU {5t+1}
8: break if the boolean outcome of a; equals to 1
9:  end for
10:  for each gradient step do
11: sample states from the state buffer B
12: 01 < 01 + l@Vgl J(ﬂg)
13: Oy < 0y + ZQVGQJ(WQ)
14: ¢ ¢ — I¢V¢L¢

5 e Bo+(1-B)

16:  end for

17: end for

Ensure: Learned policy network my




Experiment Results: CS-MRI

22.27 24.15 24.61 23.64 24.16 25.28 PSNR

24.89 24.47 26.85 27.90 26.72 27.74 28.65 PSNR

Figure: Visual and numerical CS-MRI reconstruction comparison
against the state-of-the-art techniques on medical images. The
numerical values denote the PSNR obtained by each technique.



Rethinking of the PnP-ADMM: On Derivation

m f is not the proximal map of any regularizer ¢.

m f coincides with prox,(z;7n) only when

p(z) x exp(—d(x)), 2 — Ztrue ~ N(O,UQI).

m However, p(x) may not prompt to exp(—¢(x)) and the
distribution of

(wk + ukfl) - (wk + ukfl)true

is unknown!
m PnP-ADMM is a result of the similarity of the formulation.



Rethinking of the PnP-ADMM: On Convergence

m PnP-ADMM may not be an implementation of ADMM.
m If the PnP-ADMM converges?

m If it does converge, what it converges to?



PnP FISTA

min 7Hy Az||3 + ¢()

n
2 = Sp_1 — ;AT (Asp-1—y) =z =81~ %AT (Asp—1 — )

T} = prox,(zi; 1) zr = f (k)
1—1 _1—1
Sk Zwk-i-%li(wk—wkq) Sy, :xk‘f‘qkli(xk_wkfl)
qdk qk
FISTA PnP FISTA

where it is typical to use ¢ = <1 +4/1+ 4q,§_1) /2 and g =1

with step-size n € (0702|’A’|52)'



Regularization by Denoising (RED)

m Recover « from measurements y by solving

1 1
0=—AT(AZz — —(z - f(x)).
A4z —y) 4 @ - F@)
m f is an arbitrary image denoiser.

m When f is a sophisticated denoiser and 7 is well tuned, the
solutions Z are state-of-the-art.



RED: Assumptions
Define

L1 1
PRED(x) = §<$,$ - f(z)), {(zy)= 2f‘QHy — Az|)3.

We get

Zrep = argmin £(x;y) + preD(T).
xER”

The denoiser f(x) obeys the following assumption:

Local Homogeneity:
f(A+e)x)=01+¢)f(x), VeeR"0<e< 1l

f(-) is differentiable where J f € R™™"™ denotes its Jacobian.
Jacobian Symmetry: Jf(x)T = Jf(x),Vx € R".
The spectral radius the Jacobian satisfies n(J f(x)) < 1.



RED: Proof
m From the multivariate calculus:
1 1
Vprep(z) = x — §f(93) - §[Jf($)]T$-

m Local homogeneity implies [J f(x)]x = f(x):
[f(z +ex) — f(=) — [Jf(2)]xe]]

0 = lim
e—0 llex]|
o 104+ 95@) - £(@) - [T#(@)ae]
e—0 llex]|
i 5@~ @)zl
£—0 ||| ’

m Jacobian symmetry gives Vprep(x) = — f(x).

m 7(Jf(x)) <1 guarantees the convexity.



RED: Remark

m When the denoiser f(-) is locally homogeneous, then
Vorep(x) =z — f(z) < Jf(z) =[Jf()]".

m When Jf(-) # Jf(-)7, there exists no regularizer p(-) for
which Vp(x) =« — f(x).

m Many popular denoisers lack symmetric Jacobian, making
the gradient expression invalid.



Proximal-based PnP v.s. RED: a Toy Example

m f(z)=Wzwith W=W".
m f is the proximal map of ¢(z) = (1/2n)x’ (W™ —1I) z.
m Proximal-based PnP:

~ . 1 1 _
mpnp:arginln{MHyAquL%mT (W 17I) LB}
m RED:

~ . 1 1
Tred = arggrcmn {M”y — Az|* + %mT(I — W)as}



Algorithms for RED

m GD, inexact ADMM, and a “fixed-point” heuristic that was
later recognized as a special case of the proximal gradient
(PG) algorithm.

m Accelerated proximal gradient (fastest):

xp = h(vp_1;n/L)

qr—1—1
zp=x)p + —— (T — Tp—1)
dk

vV = %_f (z) + (1 — i) ZL

where L > 0 is a design parameter that can be related to
the Lipschitz constant of ¢yeq ().



RED as Score Matching

m Given a training set {z;}.;, the empirical prior model is

T

pla) 2 2> 6w~ a)

t=1

m Build a prior model using kernel density estimation (KDE):

T

. A 1

plx;n) = T E N (@; @, nI)
t=1

m Adopting p as the prior, MAP becomes

~ o1 -
T = argmin —— ||y — Az|* — Inj(x; )
x 20



RED as Score Matching

m Because In p is differentiable, Z must obey

1 N i~
0= ;AT(A:I: —y)— Vinp(z;n)

B fomee(2; 1) = Elz|z], where z =2 + N(0,nI),x ~ p

m Tweedie’s formula says that
. 1
\% lnp(z; 77) = 5 (.fmmse(z; 77) - Z)
m The MAP estimate Z under the KDE prior p obeys
1+, 1 ~
0= ;A (Am - y) + 6 (m - fmmse(w; 77))

which matches the RED condition when f = f_ ..(;n)



RED as Score Matching: f # f

HlIl'l%P( 7 )
m fy: neural denoiser parameterized by 6
m Training strategy:

m@in E|z — fo(2)||>, where =~p, z=a+N(0,nI)

m MMSE orthogonality principle:

Ellz — fo(2)|* =E |[& = fmmse (2 n)II”
+E ||fmmse(z;77) - f@(z)H2

m Using Tweedie’s formula, we get

0 = argmin E||z — f,(2)]?
0
= argmin B | frumee(2:7) = Fo(2)II
. - 1
= argmin E[VInp(z;n) — p (fo(z) = 2) |I?

m Choose € so that (fp(z) — z)/n matches the “score” VInp



CE for Prox-based PnP

m View Prox-based PnP as seecking a solution to

Zpnp = h (Tpnp — Upnp; 1)
ipnp =f @pnp + apnp)
m It equals to find a fixed point of

2= (02G-I)(2F —1I)z
ot oY ER R 2o O bl

z2
m Mann iteration writes:

2% = (1 —4)2F +4(2G = I)(2F — I)zW



CE for RED
m CE for ADMM-based RED:

ﬁ1red =h (ired - ared; "7)

1 1.\ 7!
a7\1red - <(1 + L) I— L.f) (ired + 'l/zred)

m A more intuitive form:

Ered =h (ired - ’l/zred; 77)
ﬁred = f (ared) + Lared

m Solving the first equation gives:
~ n ~
Ured = ;AT (y - Awred)
m Plugging u,eq back:

L - ~ ~
?ZAT (Amred - y) = f (mred) — Lred



RED via Fixed-point Projection (RED-PRO)
RED-PRO problem writes:

TRED-PRO = argmin /(x;y), s.t. x € Fix(f).
xER"

m Interpretation: searching for a minimizer of ¢(x;y) over the
set of “clean” images.

m The manifold of natural images M is generally not
well-defined, it is not easy accessible and it is not convex,
making the search within this domain difficult. Therefore,
as an alternative, we propose to use Fix(f) which is
well-behaved for demicontractive denoisers and should
satisfy M C Fix(f) for a “perfect” denoiser.

m Common denoisers are far from being ideal, hence, the
solution is sensitive to the choice of the denoiser and it may
vary considerably for different choices.



d-demicontractive Mapping

A mapping 7' is d-demicontractive (d € [0, 1)) if for any « € R"
and z € Fix(T') it holds that

IT() = 2I* < [l — 2] + d||T () — x|

or equivalently

e - T@)? < (2 - Tw),2 - 2)



RED-PRO

m Assume the denoiser f(-) is a d-demicontractive mapping.
Then, RED-PRO defines a convex minimization problem.

m Consider a demicontractive denoiser f(-) and assume

f(0) = 0. Then,

1 . .
PRED(T) = 5(:13,:1: — f(=z)) =0 iff x € Fix(f).
m Hybrid steepest descent method for RED-PRO:

V1 = T — VL (25 y)
Zpr1 = f (Vig1),
Tr1 = (1 — @)vgy1 + azpya,

m which is equivalent to

Tpy1 = falxp — pe V(g3 y)), where fo = (1 — a)ld + af,



Uniform Algorithm Framework

m accelerated-PG (proximal gradient) RED algorithm, which
uses the iterative update:

Ver1 = T — e VE(TE; Y)
Zkt1 = Vgt1 + qk (Vg1 — vg), (FISTA-like acceleration)
Tpr1 = (1 — )z + af (2g+1), (SOR-like acceleration)

m Thus, when we set g = 0, i.e. when we skip the
acceleration step, the above RED variant reduces to the
iterative update of the Hybrid steepest for RED-PRO.

m When we continue and set o = 1, we obtain the PnP-PGD
method (Proximal-based).



Projection Gradient Descent

m Projected Gradient Descent writes

Tir1 = Prix(p) (@p — V(T3 y))

= Replacing the projection operator Ppiy(f)(-) with denoiser
(Plug and Play) f(-) we get PnP-PGD:

xpi1 = f(zp — V(25 y))



Convergence Theorem

Let f(-) be a continuous d-demicontractive denoiser and £(-; y)
be a proper convex lower semicontinuous differentiable function
with L-Lipschitz gradient V/(-;y). Assume the following:

(A1) a € (0, ?d)

(A2) {pm}ken C [0,00) where p, — 0and Y juy =00
k—o0 et

Then, the sequence {xy }ren generated by
Tp1 = fol@r — e VEl(xk;y)), where fo = (1 —a)ld+af,
converges to an optimal solution of the RED-PRO problem:

ZRED-PRO = argmin {(x;y), s.t. x € Fix(f).
xcR"



Conclusion

There are various ways to model the denoising problem:

PnP: Inspired by ADMM, Proximal gradient, while lacking

objective function.

RED: Regularization by Denoising, while many denoisers

do not satisfy the assumptions.

RED-PRO: require the denoisers to be demicontractive.
However, as pointed by, when applying practical algorithms
(e.g. PnP-ADMM and PnP primal-dual hybrid gradient
method (PnP-PDHG) , satisfy the same fixed-point equation as
PnP-PGM (Proximal Gradient Method)) to solve these models,
different models have the same aim:

s = fo(xs — upVe(xs;y)), where f, = (1 — a)ld + af.

Thus, we only need to guarantee the convergence of the above
formulation.



Future Directions

m RL for general parameters tuning

m The convergence theory of the PnP with weaker
assumptions

m PnP for general ADMM-based algorithms
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