
OptMATH: A Scalable Bidirectional Data Synthesis
Framework for Optimization Modeling

Zhonglin Xie

Beijing International Center for Mathematical Research
Peking University

Joint work with Hongliang Lu, Yaoyu Wu, Can Ren, Yuxuan Chen, Zaiwen Wen

March 19, 2025

1 / 25

Outline

1 Introduction

2 Preliminaries and Overview

3 Feedback-Driven PD Generation

4 The Data Synthesis and Training Methodology

5 Numerical Experiments

2 / 25

Background

The challenge, and art, in using convex optimization is in recognizing and for-
mulating the problem. Once this formulation is done, solving the problem is, like
least-squares or linear programming, (almost) technology.1

A company has th ree
t ranspor ta t ion op t ions to

choose f rom to t ranspor t 25
tons o f ca rgo , namely

t rucks , a i rp lanes , and sh ips
w i th cos ts $100 , $120 , $80

per ton and capac i t ies o f 10 ,
20 , 30 tons respec t i ve ly .

The company can’ t choose
t rucks and sh ips toge ther .
How shou ld the company

op t im ize the se lec t ion and
a l loca t ion o f these methods
to m in im ize overa l l cos ts?

D e s c r i p t i o n

i m p o r t g u r o b i p y a s g p
f r o m g u r o b i p y i m p o r t G R B

C r e a t e M o d e l
m o d e l = g p . M o d e l (" C a r g o _ T r a n s p o r t a t i o n ")

D e f i n e d e c i s i o n v a r i a b l e s
y 1 = m o d e l . a d d V a r (v t y p e = G R B . C O N T I N U O U S ,
n a m e = " T r u c k s _ T o n s " , l b = 0)
… … … …
O b j e c t i v e s
m o d e l . s e t O b j e c t i v e (1 0 0 * y 1 + 1 2 0 * y 2 + 8 0 * y 3 ,
G R B . M I N I M I Z E)
C o n s t r a i n t s
m o d e l . a d d C o n s t r (y 1 + y 2 + y 3 > = 2 5 ,
" T o t a l _ C a r g o ")
… … … …
O p t i m i z e
m o d e l . o p t i m i z e ()
P r i n t t h e r e s u l t
i f m o d e l . s t a t u s = = G R B . O P T I M A L :
 … … … …

 V a r i a b l e s ：

O b j e c t i v e s :

 C o n s t r a i n t s :

F o r m u l a t i o n P y t h o n C o d e

N o n - n e g a t i v e c o n t i n u o u s v a r i a b l e s
i n d i c a t i n g t h e v o l u m e o f c a r g o .

0 - 1 v a r i a b l e s i n d i c a t i n g w h e t h e r
t r u c k s , a i r p l a n e s , a n d s h i p s a r e
a r e s e l e c t e d , r e s p e c t i v e l y .

1
Boyd, Stephen. ”Convex optimization.” Cambridge UP (2004).

3 / 25

LLMs for Automated Optimization Modeling

Motivation: Although solver technologies are quite advanced, the process of building
optimization models still heavily relies on human expertise. The goal of automated modeling
is to reduce this dependency, allowing more people without expertise in optimization to
benefit from optimization techniques.

Related Works:

NL4Opt Competition - Initial exploration of using LLMs for assisted modeling.

OptiMUS - Prompt engineering and agent-based approach.

ORLM - Synthetic data and model fine-tuning approach.

LLMOPT - Model fine-tuning and alignment approach.

Main Challenges:

Prompt-based methods rely on LLMs’ inherent modeling capability without enhancing it.

Learning-based methods lack large-scale, high-quality optimization problem datasets.

4 / 25

https://arxiv.org/abs/2303.08233
https://arxiv.org/abs/2310.06116
https://arxiv.org/abs/2405.17743
https://arxiv.org/abs/2410.13213

Data Synthesis

Fine-tuning relies heavily on training data and the selection of a base model.

The release of o1 has sparked significant interest in data synthesis.

Existing data synthesis methods fall into two categories 2:

Data Augmentation: Enhances existing samples through augmentations techniques.
Data Synthesis: Creates new samples from scratch or via GPT.

Challenges: How to synthesize large-scale, high-quality data for Optimization Modeling?

2
Wang, Ke, et al. ”A survey on data synthesis and augmentation for large language models.” arXiv preprint arXiv:2410.12896 (2024).

5 / 25

Outline

1 Introduction

2 Preliminaries and Overview

3 Feedback-Driven PD Generation

4 The Data Synthesis and Training Methodology

5 Numerical Experiments

6 / 25

Standard Optimization Problem

Standard Form:

min
x

g(x),

subject to ci (x) = 0, i ∈ E ,
ci (x) ≥ 0, i ∈ I.

Where:

x ∈ Rn: Decision vector.

g : Rn → R: Objective function.

ci : Rn → R: Constraint functions.
E , I: Index sets for equality and inequality constraints respectively.

Main Challenges:

Modern solvers (e.g., Gurobi, Mosek) can efficiently solve optimization problems using
algorithms like interior-point methods.

The primary challenge lies in transforming real-world problems into precise mathematical
formulations.

7 / 25

Problem Formulation

The formulation for increasing the modeling capability of the LLM can be expressed as:

max
θ

E(NL,MF,PD)∼D[Q(NL,MF,PD)(MF′,PD′)]

s.t. (MF′,PD′) = Aθ(promptM(NL))

Key Components:

Aθ: Large Language Model with parameters θ

Q: Quality metric for evaluation

D: Distribution of problem instances

promptM: Modeling prompt template

NL: Natural Language Description

MF: Mathematical Formulation (abstract)

PD: Problem Data (concrete, solver-ready)

8 / 25

An Overview of our pipeline

Benchmark
(Hard LP Files)

Natural Language
Description

 Generated LP FilesGenerator

AutoFormulator

min ���
s.t. 푨� ≤ �

Math Formula

 LP Files

OptMATH-Train

Augmentation

Augmented Data

Fine Tuning

Base ModelFilter

Backtranslation
Pipeline

Rejection Samping

Reject

Step2: Forward Modeling and EvaluationStep1: Reverse Data Generation

Step3: Fine-Tuning

LLM/Expert

Quality Filtering

9 / 25

Outline

1 Introduction

2 Preliminaries and Overview

3 Feedback-Driven PD Generation

4 The Data Synthesis and Training Methodology

5 Numerical Experiments

10 / 25

Seed Problem Classes

To build our training dataset, we started by curating 53 distinct optimization problem
generators, enabling scalable generation of diverse problem instances. Here’s a simplified
example of our bin packing generator:

class BinPackingGenerator:

def __init__(self , n_items =(3 ,10), weight_range =(1 ,50),

bin_capacity =100, seed=None):

self.params = locals ()

if seed: random.seed(seed)

def generate_instance(self):

n = random.randint (*self.params[’n_items ’])

weights = {i: random.randint (*self.params[’weight_range ’])

for i in range(n)}

model = gp.Model("BinPacking")

x = model.addVars(n, n, vtype=GRB.BINARY)

y = model.addVars(n, vtype=GRB.BINARY)

model.setObjective(y.sum(), GRB.MINIMIZE)

model.addConstrs ((sum(weights[i]*x[i,j]

for i in range(n)) <=

self.params[’bin_capacity ’]*y[j]

for j in range(n)))

return model

11 / 25

Problem Data Generation Algorithm

To ensure a balanced distribution of
problem difficulty, we designed an
algorithm as shown in Algorithm 1.

The core idea is to control problem
difficulty using LLM and a complexity
score function:

S(PD) = αbinNbin + αintNint + αcontNcont

+ βlinNlin + βindicNindic + βquadNquad

+ βgenNgen + γBigM fBigM + δexpr Lexpr

12 / 25

Example: Measuring Problem Complexity

Production Planning Problem:

Variables:
Binary: y1, y2 ∈ {0, 1} (production decisions)
Integer: x1, x2 ∈ Z+ (production quantities)
Continuous: z ≥ 0 (total cost)

Objective: min z + 10y1 + 8y2

Constraint Types:

1 Linear: 2x1 + 3x2 ≤ 100, x1 ≤ 50, x2 ≤ 30

2 Indicator (Big-M): x1 ≥ 5− 100(1− y1)

3 Quadratic: z ≥ 0.5x21 + 0.3x22
4 Nonlinear: x1e

x2 ≤ 100

Complexity Analysis:

Variable counts:

2 binary
2 integer
1 continuous

Constraint counts:

3 linear
2 indicator
1 quadratic
1 nonlinear

Big-M frequency: fBigM = 2

Avg expr length: Lexpr ≈ 2.71

Score: S = 16.71 (unit weights)

13 / 25

Outline

1 Introduction

2 Preliminaries and Overview

3 Feedback-Driven PD Generation

4 The Data Synthesis and Training Methodology

5 Numerical Experiments

14 / 25

Bidirectional Data Synthesis Algorithm

We design a three-phase backtranslation
pipeline to generate high-quality problem
descriptions:

Initial Generation: LLM generates initial
NL description from mathematical
formulation and problem data

Self-Criticism: LLM evaluates the
description by examining mathematical
equivalence, completeness, and clarity

Self-Refinement: Based on criticism,
LLM generates refined descriptions
focusing on accuracy and completeness

15 / 25

An Example of Backtranslation

The backtranslation
pipeline converts
mathematical formulations
(MF) and problem data
(PD) into human-readable
problem descriptions.

To ensure the correctness
and consistency of
generated descriptions with
respect to MF and PD, we
perform rejection sampling
on the outputs.

Output-Natural Language Description
A city is planning the layout of emergency medical stations. There are 6 candidate locations for building medical stations, each
with different construction costs:
Location 1: Construction cost $80,000 ; Location 2: Construction cost $40,000 ……
The city is divided into 10 districts, each requiring different numbers of medical stations for coverage due to population density and
emergency medical needs:
Districts 1 and 2: require coverage by at least 4 stations； District 3: requires coverage by at least 2 stations ……
Each candidate location can cover specific districts:
Location 1 covers districts: 1, 2, 6, 10； Location 2 covers districts: 3, 5, 6, 9 ……
The objective is to decide which locations should be selected for building medical stations, minimizing the total construction cost
while meeting the coverage requirements for each district. Each location can only be selected or not selected (binary decision).

Input-LP File
Minimize
 80000 Selected[1] + 40000 Selected[2] + 20000
Selected[3] + 10000Selected[4]
 + 80000 Selected[5] + 90000 Selected[6]
Subject To
 MultiCover_e1: Selected[1] + Selected[3] + Selected[5] +
Selected[6] >= 4
…………
 MultiCover_e10: Selected[1] + Selected[4] + Selected[5] +
Selected[6]
 >= 4
Bounds
Binaries
 Selected[1] Selected[2] Selected[3] Selected[4] Selected[5]
Selected[6]
End

Backtranslation

An Example of Backtranslation

 Input-General Formulation

 represents the cost coefficient for each set
is a binary decision variable indicating whether set

i is selected
 represents the set of all sets containing element j
 represents the minimum number of times element j

needs to be covered

Generator

16 / 25

Forward Modeling and Rejection Sampling

Forward Modeling:

AutoFormulator transforms NL to MF and PD.

Uses Chain-of-Thought prompting strategies.

Generates diverse modeling reasoning paths.

Rejection Sampling Process:

Compare solutions: OV′
i ,j (from generated) vs

OVi ,j (from original).

Accept if OVi ,j = OV′
i ,j .

Manual validation shows 99.6% accuracy!

CoT Prompt Example

The following is an operations re-
search problem. Let’s solve it step
by step:

1 Identify the decision variables,
objective function, and
constraints

2 Formulate the mathematical
model

3 Implement the solution using
Gurobi in Python

4 Verify and interpret the results

17 / 25

Training Strategy

Data Augmentation

Multiple augmentation strategies
including:

Problem rewriting
Semantic substitution
Constraint expansion

Dual sampling quality control

Augmentation Prompt Examples

1. Rewrite the problem using different expres-
sions and terminology while keeping the core
optimization task identical.
2. Generate a variant by adding/removing/-
modifying one constraint while maintaining
problem feasibility.

Iterative Training Process

Parameter-efficient fine-tuning with LoRA

Joint optimization objective:

LSFT(θ) = −E(p,y)∼DSFT

 |y |∑
t=1

logPθ(yt |y<t , p)


18 / 25

Outline

1 Introduction

2 Preliminaries and Overview

3 Feedback-Driven PD Generation

4 The Data Synthesis and Training Methodology

5 Numerical Experiments

19 / 25

Problem Data Distribution

Eas
y

Med
ium

 E
as

y

Med
ium

Med
ium

 H
ar

d
Har

d

Difficulty Level

0

5000

10000

15000

20000

25000

Av
er

ag
e

N
um

be
r

of
 C

ha
ra

ct
er

s

4,092

8,430

11,919

16,098

24,329

Figure: Distribution of LP file lengths across
generated instances by difficulty levels.

Figure: Distribution of LP file lengths across
generated instances by problem types.

20 / 25

Statistics of the OptMATH Dataset

Problem Length Analysis:

OptMATH presents significantly
more complex problem
descriptions compared to existing
benchmarks.

Problem Type Coverage:

OptMATH-Bench covers a wide
range of optimization problems:

Linear Programming
Mixed Integer Linear Programming
Integer Programming
Nonlinear Programming
Second-Order Cone Programming

Average Question Length (character)
0

500

1000

1500

2000

2500

3000

3500

4000

3,315
2,974

1,724

1,045

541

OptMATH-Train
OptMATH-Bench
MAMO ComplexLP

MAMO EasyLP
NL4OPT

21 / 25

Statistics of the OptMATH Dataset

OptMATH demonstrates comprehensive coverage across both problem space and application domains,
with its embeddings surrounding existing benchmarks while spanning diverse industrial scenarios.

−40 −20 0 20 40

−40

−20

0

20

40

NL4OPT
MAMO EasyLP

MAMO ComplexLP
OptMATH-Bench

OptMATH-Train

22 / 25

Performance Comparison of Models on Different Benchmarks

23 / 25

Scaling Analysis on Model Size and Training Data Size

OptMATH demonstrates consistent performance gains across model sizes (0.5B-32B) and training
data scales, with larger models achieving better absolute performance while smaller models show
higher sensitivity to data scaling.

0.5B 1.5B 3B 7B 14B 32B

Model Size

0

20

40

60

80

100

M
ic

ro
 A

cc
ur

ac
y

(%
)

0.1%

23.3%
23.2%

1.2%

49.3%
48.0%

48.0%

59.9%
11.8%

62.0%

73.6%
11.5%

68.0%

76.0%
8.0%

67.3%

76.9%
9.6%

Baseline Model
Finetuned Model

Model size scaling (0.5B-32B)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

0

10

20

30

40

50

60

70

80

A
cc

ur
ac

y
(%

)

NL4OPT
MAMO EasyLP
MAMO ComplexLP
OptMATH-Bench
Micro Accuracy

Training data scaling (Qwen2.5-1.5B)

24 / 25

Many Thanks For Your Attention!

25 / 25

	Introduction
	Preliminaries and Overview
	Feedback-Driven PD Generation
	The Data Synthesis and Training Methodology
	Numerical Experiments

