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Dataset Statistics and Performance Results
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Problem Formulation

The formulation for increasing the modeling capability of LLMs:

max S NLMF PD)~D|Q(NLr pp) (ME', PD)]
s.t. (MF',PD’) = Ay(prompt,;(NL))

= Ay: Large Language Model with parameters ¢
= (): Quality metric for evaluation

= D: Distribution of problem instances

= prompt,;: Modeling prompt template

= NL: Natural Language Description

 MF: Mathematical Formulation (abstract)

= PD: Problem Data (concrete, solver-ready)

Description Python Code

Formulation

A COmpaI‘Iy has Ifhree Variables : import gurobipy as gp
transportation options to from gurobipy import GRB
ri indicati er

bles ind ng wheth
choose from to transport 25 T1,%2,T3 pla d ship
tons of cargo namely eeeeeeeeee d, respectively model = gp.Model("Cargo_Transportation")
. ’ . 1 2 Non-negative continuous variables
trucks, airplanes, and ships 1, 42, Y3 indicating the volume of cargo.

y1 = model.addVar(vtype=GRB.CONTINUOUS,
name="Trucks _Tons", Ib=0)

with costs $100, $120, $80
per ton and capacities of 10,
20, 30 tons respectively.
The company can’ t choose
trucks and ships together.
How should the company
optimize the selection and
allocation of these methods

to minimize overall costs?

Feedback-Driven PD Generation

Objectives:
Minimize 100y; 4+ 120y, + 80ys

Constraints:
T1+xo+w3>1
y1 < 1021, y2 < 20x2,y3 < 3023

r1+ax3 <1

Y1+ Y2 +ys =20
r1,To,x3 € {0,1}

model.setObjective(100*y1 + 120*y2 + 80*y3,
GRB.MINIMIZE)

model.addConstr(y1 + y2 + y3 >= 25,
"Total_Cargo")

Algorithm 1 Feedback-Driven Problem Data Generation

Require: Target complexity range [Simin, Smax|, time lim-
itS |Tin, I max|, instance generator (G, feasibility
threshold Fi,r¢et, max 1terations 1’

Ensure: Configuration © such that for PD; ~ G(O):
S(PD;) € [Smin, Smax| (complexity), 7; < Tnax (SOLV-
ing time), Pr(f; = feasible) > Fiarget

1: Initialize parameters via LLM:
@O < C(PTO ptIC(Smina Smaxa Tmina Tmax))

2: fort =1to 1l do

3:  Generate N PDs: {PD;};Y, + G(©;_1)

4:  Compute metrics: S(PD;) (Eq. 4), 7; (solving time),
f; (feasibility)

5:  Aggregate statistics: S; = % > S(PD;), 7
N > Tis Ft = =~ > I(f; = feasible)

6: if S; € [Shin, Smax] and 7 < T, and F;
-Ftarget then

[V

7: return O;_
8: else
9: Refine parameters via tfeedback:

©; < L(pro
10:  endif
11: end for
12: return () (no valid © found)

ptRC(St7 7__t7 Jtt7 @t—l))

Complexity score function:
S<PD) — O‘bianin T @intNint + contNcont + 5IinNIin T 5indicNindic
T 5quaquuad T 5genNgen T “YBigM fBigM T 5expr Lexpr

1. Performance Comparison of Models on Different Benchmarks

] 6. Training data scaling (Qwen2.5-1.5B)

Bidirectional Data Synthesis Algorithm

Algorithm 2 Bidirectional Data Synthesis Algorithm

/

1,77

PD

1,77

2: Initialize: SC = SR = Null

3:fork=1,...,7 —1do

4.

o RS

10:
11:

12:
13:
14:

15:
16:
17:
18:

Self-Criticize:

SC < L(pro

Self-Refine:
SR C(promptR(MFi, PDf,;yj, NL, SC, SR))
if SR 1s good enough then
break
end if

end for

AutoFormulation:
(MF
OV, ; < Solve PD; ; by Gurobi
OV ; < Solve PD; ; by Gurobi
if OVM- = OV;J then

return (NLi,j, MF/
else

/
0,5

Require: Instance pair (MF;, PD; ;), Max Iteration T
Ensure: (NL; ;, MF
1: Initial generation: NL < L(pro

pt;(MF;, PD; ;))

ptC (MFZ, PDZ',]', NL))

PD; ;) < Ag(prompty;(NL; ;))

return Null

end if

/
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An Example of Backtranslation
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Minimize

Subject to

Input-General Formulation

E Cidy

Za:i > k; Vj € Elements

z; € {0,1} Vi€ Sets

o c; represents the cost coefficient for each set

e x;1s a binary decision variable indicating whether set
11s selected

« S; represents the set of all sets containing element j

o kj represents the minimum number of times element j
needs to be covered
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A city 1s planning the layout of emergency medical stations. There are 6 candidate locations for building medical stations, each
with different construction costs:
Location 1: Construction cost $80,000 ;
The city 1s divided into 10 districts, each requiring different numbers of medical stations for coverage due to population density and
emergency medical needs:
Districts 1 and 2: require coverage by at least 4 stations;
Each candidate location can cover specific districts:

Location 1 covers districts: 1, 2, 6, 10;
The objective is to decide which locations should be selected for building medical stations, minimizing the total construction cost

while meeting the coverage requirements for each district. Each location can only be selected or not selected (binary decision).
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Location 2: Construction cost $40,000

District 3: requires coverage by at least 2 stations

Location 2 covers districts: 3, 5, 6, 9

” Input-LP File \

Minimize I
80000 Selected[1] + 40000 Selected[2] + 20000 |
Selected[3] + 10000Selected[4] |
+ 80000 Selected[5] + 90000 Selected[6] I
Subject To I
MultiCover el: Selected[1] + Selected[3] + Selected[5] + |
Selected[6] >=4 |
MultiCover e10: Selected[1] + Selected[4] + Selected[5] + :
Selected[6] |
>=4
Bounds |
Binaries !
Selected[1] Selected[2] Selected[3] Selected[4] Selected[5] |
Selected[6] I
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Training Strategy

Parameter-efficient fine-tuning with LoRA:

Lspr(0) = —

|

S (

p,Y)~DspT

Y|

t=1

> log Py(yily<s,p)




