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๭ 1. Problem type and length coverage
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๭ 2. LP file length by difficulty
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๭ 3. t-SNE visualization of problem space ๭ 4. Distribution of application scenarios
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๭ 5. Model size scaling (0.5B-32B)

Types Models NL4OPT
MAMO

EasyLP

MAMO

ComplexLP

OptMATH

Bench
IndustryOR OptiBench Macro AVG

Baseline

Llama3.1-8B 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.1%

Qwen2.5-7B 86.9% 83.6% 21.8% 1.6% 10.0% 36.2% 40.0%

GPT-3.5-turbo 78.0% 79.3% 33.2% 15.0% 21.0% 47.4% 51.4%

GPT-4 89.0% 87.3% 49.3% 16.6% 33.3% 68.6% 57.4%

Deepseek-V3 95.9% 88.3% 51.1% 32.6% 37.0% 71.6% 62.8%

OptiMUS (GPT-4o-2024-05-13) 78.8% 77.0% 43.6% 20.2% 31.0% 45.8% 49.4%

Qwen2.5-32B 92.7% 82.2% 44.6% 9.3% 16.0% 47.6% 48.7%

Fine-tuning
ORLM-Llama-3-8B (reported) 85.7% 82.3% 37.4% * 38.0% * 60.9%

ORLM-Llama-3-8B (reproduced) 84.5% 74.9% 34.1% 2.6% 24.0% 51.1% 45.2%

OptMATH-Llama3.1-8B (pass@1) 55.5% 73.9% 40.8% 24.4% 18.0% 55.5% 44.7%

OptMATH-Qwen2.5-7B (pass@1) 94.7% 86.5% 51.2% 24.4% 20.0% 57.9% 55.8%

OptMATH-Qwen2.5-32B (pass@1) 95.9% 89.9% 54.1% 34.7% 31.0% 66.1% 62.0%

Pass@8

OptMATH-Llama3.1-8B 97.6% 94.2% 71.6% 51.6% 37.0% 66.6% 69.8%

OptMATH-Qwen2.5-7B 98.4% 94.5% 72.5% 56.0% 38.0% 68.1% 71.3%

OptMATH-Qwen2.5-32B 97.9% 93.9% 75.4% 67.4% 47.0% 76.8% 76.4%

і 1. Performance Comparison of Models on Different Benchmarks
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๭ 6. Training data scaling (Qwen2.5-1.5B)

Problem Formulation

The formulation for increasing the modeling capability of LLMs:

max
θ

E(NL,MF,PD)∼D[Q(NL,MF,PD)(MF′,PD′)]

s.t. (MF′,PD′) = Aθ(promptM(NL))

Aθ: Large Language Model with parameters θ
Q: Quality metric for evaluation
D: Distribution of problem instances
promptM: Modeling prompt template
NL: Natural Language Description

MF: Mathematical Formulation (abstract)

PD: Problem Data (concrete, solver-ready)

A company  has  th ree  
t ranspor ta t ion  op t ions  to  

choose  f rom to  t ranspor t  25  
tons  o f  ca rgo ,  namely  

t rucks ,  a i rp lanes ,  and  sh ips  
w i th  cos ts  $100 ,  $120 ,  $80  

per  ton  and  capac i t ies  o f  10 ,  
20 ,  30  tons  respec t i ve ly .  

The  company  can’ t  choose  
t rucks  and  sh ips  toge ther .  
How shou ld  the  company  

op t im ize  the  se lec t ion  and  
a l loca t ion  o f  these  methods  
to  m in im ize  overa l l  cos ts?

D e s c r i p t i o n

i m p o r t  g u r o b i p y  a s  g p
f r o m  g u r o b i p y  i m p o r t  G R B

#  C r e a t e  M o d e l
m o d e l  =  g p . M o d e l ( " C a r g o _ T r a n s p o r t a t i o n " )

#  D e f i n e  d e c i s i o n  v a r i a b l e s
y 1  =  m o d e l . a d d V a r ( v t y p e = G R B . C O N T I N U O U S ,  
n a m e = " T r u c k s _ T o n s " ,  l b = 0 )
… … … …
#  O b j e c t i v e s
m o d e l . s e t O b j e c t i v e ( 1 0 0 * y 1  +  1 2 0 * y 2  +  8 0 * y 3 ,  
G R B . M I N I M I Z E )
#  C o n s t r a i n t s
m o d e l . a d d C o n s t r ( y 1  +  y 2  +  y 3  > =  2 5 ,  
" T o t a l _ C a r g o " )
… … … …
#  O p t i m i z e
m o d e l . o p t i m i z e ( )
#  P r i n t  t h e  r e s u l t
i f  m o d e l . s t a t u s  = =  G R B . O P T I M A L :
 … … … …

 V a r i a b l e s ：

                 
               

                   

 
O b j e c t i v e s :

 C o n s t r a i n t s :

F o r m u l a t i o n P y t h o n  C o d e

N o n - n e g a t i v e  c o n t i n u o u s  v a r i a b l e s  
i n d i c a t i n g  t h e  v o l u m e  o f  c a r g o .

0 - 1 v a r i a b l e s  i n d i c a t i n g  w h e t h e r  
t r u c k s ,  a i r p l a n e s ,  a n d  s h i p s  a r e  
a r e  s e l e c t e d ,  r e s p e c t i v e l y .
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Algorithm 1 Feedback-Driven Problem Data Generation
Require: Target complexity range [Smin, Smax], time lim-

its [Tmin, Tmax], instance generator G, feasibility
threshold Ftarget, max iterations T

Ensure: Configuration Θ such that for PDi ∼ G(Θ):
S(PDi) ∈ [Smin, Smax] (complexity), τi ≤ Tmax (solv-
ing time), Pr(fi = feasible) ≥ Ftarget

1: Initialize parameters via LLM:
Θ0 ← L(promptIC(Smin, Smax, Tmin, Tmax))

2: for t = 1 to T do
3: Generate N PDs: {PDi}Ni=1 ← G(Θt−1)
4: Compute metrics: S(PDi) (Eq. 4), τi (solving time),

fi (feasibility)
5: Aggregate statistics: S̄t = 1

N

∑
S(PDi), τ̄t =

1
N

∑
τi, Ft =

1
N

∑
I(fi = feasible)

6: if S̄t ∈ [Smin, Smax] and τ̄t ≤ Tmax and Ft ≥
Ftarget then

7: return Θt−1

8: else
9: Refine parameters via feedback:

Θt ← L(promptRC(S̄t, τ̄t,Ft; Θt−1))
10: end if
11: end for
12: return ∅ (no valid Θ found)

4.1. Backtranslation Pipeline

To generate high-quality NLs of optimization problems at
scale, we leverage a specific LLM as the foundation of our
pipeline. Recent research has demonstrated that complex
tasks often benefit from iterative refinement approaches
rather than direct generation (Madaan et al., 2024). This
observation aligns with human problem-solving processes
in mathematics, which typically requires multiple attempts
and refinements. Building upon this insight, we design a
three-phase backtranslation pipeline that systematically im-
proves the quality of generated descriptions through iterative
refinement. All prompt templates used in this pipeline can
be found in E.1.

Initial Generation. Given the mathematical formulation
MFi and the corresponding problem data PDi,j of a prob-
lem j in i-class, the LLM generates an initial natural lan-
guage description NL using the prompt template promptI.
This stage requires the model to comprehend both the math-
ematical semantics and the instance parameters to produce
a preliminary human-readable description.

Self-Criticism. Using prompt template promptC, the LLM
evaluates the current description by examining the math-
ematical equivalence with MFi, completeness of the con-
straints and objective functions, clarity and comprehensi-
bility, and consistency of the parameters with PDi,j . The
criticism SC in iteration k incorporates feedback from all

Algorithm 2 Bidirectional Data Synthesis Algorithm
Require: Instance pair (MFi,PDi,j), Max Iteration T
Ensure: (NLi,j ,MF′

i,j ,PD
′
i,j ,OVi,j)

1: Initial generation: NL← L(promptI(MFi,PDi,j))
2: Initialize: SC = SR = Null
3: for k = 1, . . . , T − 1 do
4: Self-Criticize:

SC← L(promptC(MFi,PDi,j ,NL))
5: Self-Refine:

SR← L(promptR(MFi,PDi,j ,NL,SC,SR))
6: if SR is good enough then
7: break
8: end if
9: end for

10: NLi,j ← SR
11: AutoFormulation:

(MF′
i,j ,PD

′
i,j)← Aθ(promptM(NLi,j))

12: OVi,j ← Solve PDi,j by Gurobi
13: OV′

i,j ← Solve PD′
i,j by Gurobi

14: if OVi,j = OV′
i,j then

15: return (NLi,j ,MF′
i,j ,PD

′
i,j ,OVi,j)

16: else
17: return Null
18: end if

previous iterations to guide improvements.

Self-Refinement. Based on the criticism, the model gen-
erates refined descriptions SR with the prompt template
promptR. The refinement process focuses on improving
the mathematical accuracy, completeness of the constraints,
and clarity of the descriptions.

This process iterates for T rounds until a satisfactory de-
scription NLi,j is obtained, with each iteration potentially
improving the quality of the generated description. Based
on our empirical analysis (see Appendix C.2), we set T = 1
in the final implementation.

4.2. Forward modeling

Building upon the NLs generated in subsection 4.1, we
leverage AutoFormulator to transform them back into MFs
and PDs in solver code form, enabling rejection sampling
for quality validation. Given a NL as input, AutoFormu-
lator produces two key outputs: a MF and corresponding
PD in solver code form. While previous works (Tang et al.,
2024; Jiang et al., 2024) adopted fixed output formats, our
approach is not constrained to any particular format, as
our primary goal is to obtain correct solver code, with the
formulation serving as an intermediate reasoning step. To
facilitate genuine mathematical modeling capabilities rather
than superficial format mapping, we design diverse Chain-
of-Thought (CoT) prompting strategies (Wei et al., 2022).

5

Complexity score function:

S(PD) = αbinNbin+αintNint+αcontNcont+βlinNlin+βindicNindic
+βquadNquad+βgenNgen+γBigMfBigM+ δexprLexpr
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erates refined descriptions SR with the prompt template
promptR. The refinement process focuses on improving
the mathematical accuracy, completeness of the constraints,
and clarity of the descriptions.
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scription NLi,j is obtained, with each iteration potentially
improving the quality of the generated description. Based
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Building upon the NLs generated in subsection 4.1, we
leverage AutoFormulator to transform them back into MFs
and PDs in solver code form, enabling rejection sampling
for quality validation. Given a NL as input, AutoFormu-
lator produces two key outputs: a MF and corresponding
PD in solver code form. While previous works (Tang et al.,
2024; Jiang et al., 2024) adopted fixed output formats, our
approach is not constrained to any particular format, as
our primary goal is to obtain correct solver code, with the
formulation serving as an intermediate reasoning step. To
facilitate genuine mathematical modeling capabilities rather
than superficial format mapping, we design diverse Chain-
of-Thought (CoT) prompting strategies (Wei et al., 2022).

5

Output-Natural Language Description
A city is planning the layout of emergency medical stations. There are 6 candidate locations for building medical stations, each 
with different construction costs:
Location 1: Construction cost $80,000 ;    Location 2: Construction cost $40,000    ……
The city is divided into 10 districts, each requiring different numbers of medical stations for coverage due to population density and
emergency medical needs:
Districts 1 and 2: require coverage by at least 4 stations；    District 3: requires coverage by at least 2 stations      ……
Each candidate location can cover specific districts:
Location 1 covers districts: 1, 2, 6, 10；   Location 2 covers districts: 3, 5, 6, 9     ……
The objective is to decide which locations should be selected for building medical stations, minimizing the total construction cost
while meeting the coverage requirements for each district. Each location can only be selected or not selected (binary decision).

Input-LP File
Minimize
  80000 Selected[1] + 40000 Selected[2] + 20000
Selected[3] + 10000Selected[4]
   + 80000 Selected[5] + 90000 Selected[6]
Subject To
 MultiCover_e1: Selected[1] + Selected[3] + Selected[5] +
Selected[6] >= 4
…………
 MultiCover_e10: Selected[1] + Selected[4] + Selected[5] +
Selected[6]
   >= 4
Bounds
Binaries
 Selected[1] Selected[2] Selected[3] Selected[4] Selected[5]
Selected[6]
End

Backtranslation

An Example of Backtranslation

     Input-General Formulation

 represents the cost coefficient for each set
is a binary decision variable indicating whether set

i is selected
 represents the set of all sets containing element j
 represents the minimum number of times element j

needs to be covered

Generator

Training Strategy

Parameter-efficient fine-tuning with LoRA:

LSFT(θ) = −E(p,y)∼DSFT

 |y|∑
t=1

logPθ(yt|y<t,p)




