ODE-based Learning to Optimize

Zhonglin Xie

Beijing International Center for Mathematical Research
Peking University

Joint work with Zaiwen Wen, Wotao Yin

June 5, 2024

1/36

Two important questions

» How to translate the fast convergence properties of ODEs to algorithms?

— p=Y(p)
7 ‘\f.tx . §ample-and-hp\d p=Y(p)
. / implementation Combine error analysis in ODE and complexity
i Lyapunov
s 2 Level set analysis in optimization

o Trigger-New iteration
Figure: Rate-matching discretization

» How to select the best coefficients for (ISHD)?

Sclected Undate Update Leamed
Optimizer P Optimizer

Optimizers ptimizer mizees . .))
e)) 1 erormind) A learning to optimize framework with
ontne Traiing Dyamics e theoretical guarantee
(a) Classic Optimizer (b) Learning to Optimize

Figure: Learning to optimize 2/36

A continuous-time viewpoint of acceleration methods: min f(x)

» Gradient descent method corresponds to gradient flow
X1 = xk — VsVF(xx) & x(t) = —-VF(x(t))

» Nesterov accelerated gradient method corresponds to

e = yer — SVF (o) £(8) + x() + VSV (x(1)x(2)
W= g) <1+3‘f) F(x(£)) =0
> Inertial system with Hessian-driven damping
%(t) + %x(r) + BV (x(£)x(t) + 1 (£)VF(x(t)) = 0 (ISHD)

> Let w(t) =~(t) — B(t) — B(t)/t. Convergence condition for (ISHD)
v(t) > B(t) + ﬁ(tt), tw(t) < (a —3)w(t), forallt >ty
Convergence rate: f(x(t)) — f, = O (1/(t?w(t)))

3/36

Qur training and testing framework

-
@ a 0
[&(t) + S a(t) + B(t)V f(2(t))&(t) +7(t)VF(z(t)) =0 (ISHD)
&
Parameterized a, B, (+), Yo, () g'
v 2
— min Stopping Time x(t) converges r =]
< | | Training 0 g
2| |problems I s.t. Convergence Condition g
.S Stability Condition {z1}2, converges s
o
S A
[a} Trained v, By, (+), 7o, () _J
& 2 2 B
3| (Test s
3 rzts)lletiﬁs Learned optimization % =
g p_J method (EIGAC) g g
2 =]
L (&)
T @ =
y @ 5
[«
Thi1 — T
=t = v — A(t) V () %
v -0 (o] 5
B2 2 (o — B(t0)V) + () — 18V F (o)
: -

4/36

Outline

@ Conditions for stability-preserving discretization

5/36

A fundamental result: an enhanced convergent condition for ISHD
Theorem 1
Given k € (0,1], A € (0, « — 1] and f is twice differentiable convex
3(t) = t2(v(t) — wB(t) — kB(£)/t) + (s = 1 = X) = A(1 — k) tA(1),
(t) = v(t) — B(t) — B(t)/t, 0(t) >0, and o(t) < Atw(t),

a > 3,tg > 0,e > 0 are real numbers, 3 and ~y are nonnegative continuously differentiable
functions defined on [ty, +00). Then x(t) is bounded and

(CVG-CDT)

S

Fx(e) ~ £ < 0 (575) VA < 0 (s). Ikl <0 (3).

/t:o()\tw(t) _S(0))(F(x()) — £) dt < oo, /: Ho— 1= N)[Ix()|2dt < oo,

/°° 2B(t)w(8)|[VF()|2 dt < oo, /: 2B(£)(V2F(x(£))x(2), X(£)) dt < 00

to

6/36

Proof: Lyapunov function and term cancelling

» Construct the Lyapunov function

E(t) =o(t) (F(x(t)) = £) + %HA(X(t) = x.) + t(x(t) + kB(E)VF(x(1))]>

FML = R)EBETA().x(0) -) + D esevA R (Lya)
T MGEk

> Differentiating through t, we set the term with brown color to O:
d : _
—E(t) =0(t)(F(x(t)) — £) = Atw(t)(VF(x()), x(t) = x¢) — (@ — 1 = A)t[|x(2)]|?

dt
+ ((5(t) — (Pu(t) + (k(a—1=A) = A1 — ,».»))w(t)))(Vf(x(t)),x(t»
— wt?B(E)w ()| VA(x(0)1? = (1 = r)EZB(E)(V2F(x(£))x(t), X(t)) <O

P Integrating the inequality above from ty to t completes the proof of Theorem 1
7/36

Applying forward Euler scheme to (ISHD)

> Let v(ty) = x(to) + S(to)VF(x(to)) and
v(t) — B(t)VF(x(t))
P=(x(t), v(t), t) = (1)

(—?(V(t) = BOVE(x(1))) + (B(t) = (1)) VF(x(t))
» The equation (ISHD) can be reformulated as the first-order system

(igg) = h=(x(t), v(t), t), notice that V>f(x(t))x(t) = d(—ltVf(x(t))

> Let h be the step size, tx = to + kh, k > 0. The forward Euler scheme of the (ISHD) is

Ml 72k v — B(8)VF(xe),
h (F-Euler)

W = *% (vi = B(t) VF (xk)) + (B(tr) — ¥(t))VF (%)

8/36

Explicit Discretization with Fixed Stepsize is Unstable

Set p=5,a=2p+1,53(t) =0 and y(t) = p?tP~2 in (ISHD). Consider

N
min £(x) = % ; log(1 + exp(—bi{ai, w)))

where the data pairs {a b;} € R"” x {0,1},i € [N].

10°

[zeyl

0 25 50 75 100 125 150 175 200
iteration

Figure: Directly applying 4-th Runge-Kutta diverges 9/36

Conditions for stable discretization

Theorem 2

Suppose the assumptions in Theorem 1 and (CVG-CDT) hold. Given ty, so, and h, the

sequence {x}2°, is generated by the equation (F-Euler) and x(t) is defined as

Xk+1 — Xk
h

Assume three constants 0 < C;, 0 < G, < 1/h—1/ty, and 0 < G5 fulfill

X(t) = xx + (t — t), t € [tk, tkr1)-

B(6)] < GB(E), [(t) = B(1)] < Ga(r(t) = B(2)), B(t) < Gaw(t).

Then, it holds f(xx) — f, < O(1/k) under the following stability condition:

Nx, £) 2 [[V2F(x)Il, - aB(t)/t <A(t) = B(t) < B(t)/h,

\//01/\((1 — 7)X(t,Z,f) + 7X(t), f) dr < V(D) - B + \évit) — B — 268

()

()

(3)

(STB-CDT)

10/36

Key technique: error decomposition

» Local Truncated Error:

(e m - x(®)) (t) - B(E)VF(x(1)
‘“”‘(v(wh)—v(t)) h(—?V(t)Jr(?,B(t) B(t) - (r))mx(t)))')

» Global error: re = x(tx) — xk, sk = v(tk) — vk, and ex = (rk, sk)

» We only need to control ex41, which has two resources

rev1) [x(t) teth X
(sﬁl> - <v(tﬁ)> ARCEE <ﬁ) ~ ()

— I — hpB(ti) G(tx) hi
= ((ozﬂ(tk)/tk + B(te) — v(t)G(te) (1= ah/t)l) (k) + he(tk)
W (ti,G(t))

where G(t) = [y V2f(x(tx) + 7r) dr. Abbreviate Wy = W(tx, G(tx))

11/36

Control p(t) and e, simultaneously

» Define the contraction factor p(t) = ||W(t, G(t))||. We need only to estimate the
nonlinear recurrence relation (convolution series)

n—1 n

len+all < [IWalllleall + Alle(ta) |l < [T [Willlleo| + o)l + 3= TT IIWilllle(a)]

k=0 k=0 I=k+1
» We enhance Theorem 2 and prove the following propositions for each k:

M My ~ (1
th) <1—o— < —= d f(x)—fx<O(-
p(te) < TR HekH_\/ﬁ’ and 7)) — fx < <k>

Po(k) Py (k) Pa(k)
» {Po(k)}k<n implies P1(n), while Py(n) relies on stable condition and Pi(n)

» Pi(n) implies P3(n): The function value minimization rate is
FOxi) = fi <IF(xi) = FOx(t))] + [F(x(2)) = £i]

1 E(t
< [Tt el + 5 | [92 0xt0) + renyar| el + ook
O/ (3(1)) O(1/t)

(5)

12/36

Proof of the convergence property of the forward Euler discretization

» Using Cauchy inequality and Theorem 1, for certain M3, we have

le(ell < o(t/t) and >~ &%t < Matg/? /2, (6)
k=0

» Assume Py(k) and Pi(k) are valid for k < n. For k < n, we have

[T Wil =I] ole) = exp (Z (- 1+ 1)) < exp (i(p, - 1))
I=k 1=k 1=k

I=k

7
n ah a tn+1 1 tk (1//2 ()
<exp —Z— < exp ——/ —dt) =
-y t 2 tr t the1
» {Po(k)}k<n implies P1(n): Combine {Py(k)}k<n and equation (6), we have
lentall < [le(ta)ll + IWilllle (]l < <> le(t)ll < Ms
k=0 I=k+1 ko \ It tr1 .

Outline

© Select the best coefficients using learning to optimize

14/36

Stopping time: a differentiable continuous-time complexity

A A

Ordinary Method

accorerme[] |

195zl

[V f(a)l

Accelerated Method Accelerate

«

Accelerated Method

N

N

(a) Measure-based (b) Complexity-based

Definition 3 (Stopping Time)
Given the initial time tp, the initial value xp, the initial velocity x(tp), the trajectory X(=, ¢, f)

of the system (ISHD), and a tolerance ¢, the stopping time of the criterion ||Vf(x)|| < ¢ is
T(Ef) =inf{t [[VAX(E ¢ 1))l < et >t} (8)

15/36

Tackle the point-wise contraints using integration

» With w(t),d(t) defined in (CVG-CDT), we introduce

p(x, [\///\ 1—7)x 4+ 7x, f)dr — \/7(t) — B(t)
—\/v(t)—ﬁ'(t)—(fﬁ(t)] ,
+

a(=.1) = [3(1) = A1) = B(e)/h]_+ [B(e) + aB(e)/t = ~(1)]

+ [8(8) - Atw(t)L +[-8(1)], -

» Setting P, @ < 0 ensures (CVG-CDT) and (STB-CDT) hold for f

T(E,f) T(E,f)
P(Z,f) = /t p(X(t,Z,), %(£), 5, £, /) dt, Q(E,F) = /t q(=, t)de

16/36

A L20 framework for selecting the best coefficients

» Induced distribution: Given a random variable £ ~ P. We say P is the induced
probability of the parameterized function f(+; £)

EAT(=)] = /5 T(Z,f(5) dP(§) = E[T(=, (-)]

» Framework: minimize the expectation of stopping time under conditions of convergence
and stable discretization

mEin Ef[T(=,)], (9)
st. Ef[P(Z,1)] <0, EfQEZ f)]<0, (10)

» Parameterization: 3 — [y, — 7s,. Set 0 = (o, 01, 62).

17/36

Solve the L20 problem using exact penalty method

Given the penalty parameter p, the /1 exact penalty problem writes
min T(6) = Er[T(0,)] + p (B[P0,)] + Er[Q(0, F)])

(11)
=Ef[T(0.f)+ p(P(0,f) + Q0. f))]

Algorithm Stochastic Penalty Method (StoPM) for L20 problem

. Input: initial weight 6y, penalty coefficient p, training dataset F
while Not(Stopping Condition) do
Sample a function: f, € F.
Computing the gradients Jr, Jp and Jg correspond to T, P and Q
Update variable: 041 < 0x — n(Jr + Jp + Jg)-
Update index: k < k + 1.
end while
: Output: the trained weight 6.

@ a kN

18/36

Outline

© Computation of the conservative gradients

19/36

Conservative gradient

» When parameterize «, 8,7 using neural networks, they may be nonsmooth

» The output of auto differentiation in nonsmooth functions may not be Clarke
subdifferentials, but they are certainly conservative gradients

» Conservative gradient generalizes subdifferentials while preserving chain rule

» WV is termed the conservative Jacobian (gradient if m = 1) of 7 if and only if
diﬂ'(l’(L)) = Ar(t), forall Ae W(r()), for almost all v € [0,1],
L

for any absolutely continuous curve r : [0,1] — R

» Consider the example:

() = ([=sl4 +5) — sl =0 — g(s) =

autograd using TensorFlow

g is not the Clarke subdifferential of f but a conservative gradient
20/36

Differentiate through the ODE flow of (ISHD): X /06

» Reformulate (ISHD) as a first-order system (1) with a parameterized right-hand-side
term :
P R2TIEP L R27 (x, v, t,0) — Yg(x, v, t). (12)
Denote the flow of (1) with parameterized ¢ as X(xo, vo, 6, t)

» Denote J¥: R2n1+p — R2nx(2n+14p) 35 3 conservative Jacobian of ¢ with respect to
(x,v,t,0). The coordinate projection (partial derivative) writes
By =M ¥, J¢ =N, % and ' = NyJ?

» Applying the general result to the first-order system (1): 6 — A(tp) is a conservative
Jacobian of § — X(xo, vo,0, t1) (smooth version: 90X /00)
At) = Y (DA(t) + Jo(t), A(t1) = O2nxp for all t € [to, ta] (13)

» Smooth version:
OX _ o dX | ovy
00 t, Ox df 00

21/36

Evaluate the derivative of stopping time: V,T(f,0)

» Take limit by continuity: ||[Vf(X(T(f,0),f,0))||*> —e>=0
» Implicit function theorem (valid in nonsmooth case):

87X
ot

where T = T(f,0),X = X(T(f,0),f,6)
» Invoking the first-order form of (ISHD):

%f = x(T) = v(T) = x(T) - B(T)VF(x(T))
t=T

where x(t) = X(t, f,0)

VF(X)TV2f(X) (

X
Vo T(f,0) + ae) =0

» The derivative:

oX
00

22/36

Vo T(F.0) = (VA(X) V2F(X) (V(T) — X — BT)VA(X))) VAX)V2A(X)

Conservative gradient of the constraints
» Recap:

T@,f) T(@,f)
P(6, f):/ p(X(t,6,F),%(£), 0, ¢, F)dt, Q6 f):/ q(6, t) de

to to

» Applying the chain rule gives
T(6.f) £ 5 £
dP(0, f) :/ Ove(s(t), t,)W(t) n op(x(t),x(t),0,t,f)
t

a6 i 0 26 dt
aT (6, f
+ (7). x(1),0, 7,0 1)
AQ(o,f) (TN dg(e, 1) T (6,)
- cqlv. 1) T
d9 /to ap A a6 T

where x(-) is the interpolation defined in (2), w(:) is the solution of

X050\ Du(s(t), £, F .

OnXl

23/36

Clarke subdifferential of the point-wise maximal function

> Let {f;,;: R" = (—00,+00] }neca be a family of proper convex functions and

f(x) = sup f(x)
neA

> If xo € N,eaint domfy, and I(x0) = {n € A| f;(x0) = f(x0)}, then

conv(U 6ﬁ7(xo)> — 9 (x0)
nel(xo)
Lu" Au. Set v = argmax u' V2f(x)u. We have
[[ul=1

OV2£(x)
= W = Ojjkf (x)vivj
A=V2(x) OXk >}k {; i (x) J}k

7]10> 772:0

when A(f, x) = Amax(V2f(x)). This enables the evaluation of Jp/00,0p/0x

>)\max(A) = SUpH

ull=

ON(f,x) OAmax(A)
ox 0A

d

— (de(x+771V+772V) = D*f(x)[v. v],

" dip \ dm

24/36

Outline

@ Convergence analysis

25/36

Criteria for Clarke stationarity using directional derivative

» Let 5 be Lipschitz continuous near

» The Clarke directional derivative of s at # along a nonzero vector ¥:
— 0+ 19) — (0
(0 9) 2 limsup 20 T0) = #(0) (14)
0—0 T
70

» The Clarke subdifferential of > at 6 is given by

0x(0) & {a € RY :52(0;9) > a0, Vi € R}

» Clarke stationarity: 0 € 0¢(6)

v

6 is a Clarke stationary point of s if and only if »°(6;9) > 0 for all ¥ € R%

26 /36

Precludes infeasible stationary point using sufficient decrease condition

» Given the training dataset F, we denote the residual function as
R(0) = Ef[P(6,f) + Q(0,)]
» This function measures the constraints violation. The feasible set is defined by
S={6|P(,f)<0,Q,f)<0,Vf e F} (15)
Assumption 1 (Uniform sufficient decrease condition)

For each infeasible point 0, i.e. § ¢ S, there exists a nonzero vector ¥, such that
R°(0;9) < —c||9||. Here the constant c is uniform for each 6.

Theorem 4

Suppose E¢[T (0,)] is globally Lipschitz continuous with Lipschitz constant Lt. Let
Assumption 1 hold. Given the penalty parameter p > L1 /c, any infeasible point of the
penalty function T can not be a D-stationary point.

27736

Sufficient decrease condition precludes infeasible stationary point

» Consider the penalty function

T(0) =Er [T(0,F) + p(P(O,f) + Q6,F))]

» For any infeasible point 6, using Assumption 1, there must exists a direction ¥, such that
T2(0:0) = Ee[T(-,))I°(6:0) + pR°(6,9) < Lr|[9]| — cpll?]| <O.
» Invoking the criteria of Clarke stationary point, we know 6 cannot be a Clarke stationary
point of T
» Clarke subgradient is a minimal conservative gradient

» For any conservative gradient JT of T, we have T c JT. Hence, 6 can not be a
D-stationary point of T

28/36

SGD converges with (nonsmooth) auto-differentiation: Assumptions

Assumption 2 (Assumptions of the SGD)
1. The step sizes {nk},, satisfy

00 00
nk = 0, an:OO, and 277£<00
k=1 k=1

2. Almost surely, the iterates {0y }x>1 are bounded, i.e., sup;>1 ||0k|| < co.

3. {&k}k>1 is a uniformly bounded difference martingale sequence with respect to the
increasing o-fields

ﬁk = 0(017917§JJS k)

In other words, there exists a constant M > 0 such that

Elék | Zkl =0 and E[||&|? | Fu] < Mg forall k> 1.

29/36

SGD converges with (nonsmooth) auto-differentiation

Assumption 3

The complementary of {T(0) | 0 € JT(0)} is dense in R.

Theorem 5 (SGD converges using conservative gradient) |

Suppose that Assumptions 2 and 3 hold. Then every limit point of {6y }k>1 is stationary and
the function values {»(8y)}k>1 converge.

Theorem 6 (Convergence guarantee for Algorithm 1)

Suppose Assumption 1, 2 and 3 hold, {0 }«>1 is generated by Algorithm 1. Then almost
surely, every limit point 0, of {0x}x>1 satisfies 0, € S¢, 0 € JT(H*) and the sequence
{T(6k)}k>1 converges.

30/36

Outline

© Numerical results

31/36

Setting and datasets

» Consider the logistic regression problem defined by

> log(1 + exp(—bi(ai, x))),

min fy(x) = 7
(a;,b,-)G@

x€R"

where Z is a subset of a given dataset ¥ and {a;, b;} € R" x {0,1},i € [|Z]]

» The datasets are listed as below

Dataset n Nirain Niest Separable
aba 123 6,414 26,147 No
w3a 300 4,912 44 837 No

mushrooms 112 3,200 4,024 Yes
covtype 54 102,400 478,612 No
phishing 68 8,192 2,863 No

separable 101 20,480 20,480 Yes

32/36

Training results

60 —O— logistic_mushrooms 17.5{ [J —O— logistic_mushrooms
~/v— logistic_w3a ~/v— logistic_w3a
50 ~>~ logistic_phishing 15.0 ~>~ logistic_phishing
—{ logistic_covtype —{+ logistic_covtype
125
2 40
= 2100
2 g
230 & 75
o
*‘;“ q
20 50
2.5 VA
10
0.0
0 100 200 300 400 500
iteration iteration
(a) Stopping time on logistic regression (b) Penalty on logistic regression

Figure: The training process in different tasks.

33/36

Testing: Compared methods

» GD. xx11 = xx — hVf(xx). We set the stepsize as h=1/L
» NAG. We choose h = 1/L and employ the version for convex functions

— i — hVF — e e —
Vi1 = Xk — hVF(xk), Xkp1 = Y1 + k+2(Yk+1 V)

> EIGAC. Explicit inertial gradient algorithm with correction, i.e. Algorithm correponds to
(F-Euler). We provide two versions of EIGAC with default coefficients o = 6,
B(t) = (4/h —2a/t) /L, and B(t) = hy(t) and the coefficients learned by Algorithm 1.
The numerical experiments effectively show that the EIGAC with default coefficients are
sufficient to converge and the performance is comparable with NAG, while EIGAC with
learned coefficients is superior over other methods.

34/36

Testing: Compared methods

» IGAHD. Inertial gradient algorithm with Hessian-driven damping. This method is
obtained by applying a NAG inspired time discretization of

x(t) + %X(t) + BVRF(x(t))x(t) + (1 + f) VF(x(t)) = 0. (16)

Let s = 1/L. In each iteration, setting ax = 1 — o/ k, the method performs

YKk = Xk + (6 7% (Xk — Xk,]_) — ﬂ\/g (Vf(Xk) — Vf-(Xk,]_)) — /BL/EV)C(X/(]_) y (17)

Xk+1 =Yk — SV (yk) .

It has been show that IGAHD owns O(1/k?) convergence rate when 0 < 3 < 2/4/s and
s < 1/L. Its performance may not coincide with NAG due to the existence of the
gradient correction term. In our experiments, IGAHD serves as a baseline of the
optimization methods derived from the ODE viewpoint without learning.

35/36

Testing results

-0~ 6D 10° -0- 6D
-~ NAG -~ NAG
~{~ IGAHD ~{~ IGAHD -
10-1] ¢ EIGAC(default) 3~ EIGAC(default) 10
107 &
z z .
5 1072 B 102 g1
1073 103 1072
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
iteration iteration iteration
(a) aba (b) mushrooms (c) w3a
-0- 6D 100 -0- 6D -0~ GD
1071 ~>- NAG ~>~ NAG O~ NAG
~{~ IGAHD ~{~ IGAHD ~[+ IGAHD
&%~ EIGAC(default) % EIGAC(default) 107 —3- EIGAC(default)
—— EIGAC 107! —— EIGAC —{—~ EIGAC
Fro”] .
= B E10
107 10-3 102
0 50 100 150 200 250 300 o 50 100 150 200 250 300 o 50 100 150 200 250 300
iteration iteration iteration

(d) covtype

(e) separable

(f) phishing

36/36

	Conditions for stability-preserving discretization
	Select the best coefficients using learning to optimize
	Computation of the conservative gradients
	Convergence analysis
	Numerical results

