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How Mathematicians Model Fast Algorithms: PEP
Fµ,L: µ-strongly convex L-smooth functions (µ ≥ 0)

Performance Estimate Problem (PEP): given N and x0

min
{hi,j}

max
f∈Fµ,L

‖∇f (xN ) ‖
‖∇f (x0) ‖

s.t. xN obtained from

xi+1 = xi −
i∑

j=0
hi,j∇f(xj) and x0

Systematically generate the fast algorithms with worst-case
guarantees. Often tractable for first order methods.

Convex: Optimized Gradient Method (OGM)

Strongly convex: Information-Theoretic Exact Method

Composite, Operator Splitting, Primal Dual, ...

Simple proofs for first-order methods



PEP Summary

PROS

Convex interpolation: from infinite to finite problems

Mathematical-orientation: accelerate with guarantee

Very general: can be used to analyze any interpolable
function class

CONS

Ill-posed SDP: hard to scale when N is large

Not automatic: first get a numerical solution, then
manually approximate it with a symbolic formula

Pessimistic and conservative: try to minimize the
worst-case performance



How Computer Scientists Model Fast Algorithms: L2O
Learning to Optimize: given x0 and N

min
{θi}

Ef [f (xN )]

s.t. xi+1 = xi −NN({xj ,∇f(xj)}ij=0, θi), t = 1, . . . , N − 1

where f ∼ T , a probability measure defined in functional space

PROS: significant improvement; easy to implement

CONS: no theoretical guarantee; not explainable; finite iterate;
sometimes needs the ground truth x?
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An Equavilent Form of PEP
Given x0, minimizing ‖∇f(xN )‖ with a fixed N

min
{hi,j}

max
f∈Fµ,L

‖∇f (xN ) ‖
‖∇f (x0) ‖

s.t. xN obtained from

xi+1 = xi −
i∑

j=0
hi,j∇f(xj) and x0

Given x0, minimizing N with a fixed optimality ‖∇f(xN )‖ ≤ ε

min
{hi,j}

max
f∈Fµ,L

N

s.t. xN obtained from

xi+1 = xi −
i∑

j=0
hi,j∇f(xj) and x0

N = min{n : ‖∇f (xn) ‖ ≤ ε}



Optimisitic and Computation Tractable Reformulation
Consider a function F (x; θ) with variable x and parameter θ.
Given a probability measure T of the parameter θ, we say T is
the probability measure of functions generated by
f(·) = F (·; θ), θ ∼ µ.

Given a task distribution f ∼ T , a tolerance ε and x0

min
{hi,j}

Ef [N ]

s.t. xN obtained from

xi+1 = xi −
i∑

j=0
hi,j∇f(xj) and x0

N = min{n : ‖∇f (xn) ‖ ≤ ε}

N is not differentiable with respect to {hi,j}

We will solve this in a continuous time model!



A comparison of two approaches for acceleration

Ordinary Method

Accelerated Method

Accelerate

(a) Performance measure based

Ordinary Method

Accelerated Method Accelerate

(b) Complexity based



Optimization Methods: Discrete and Continuous

Gradient Flow
dx
dt (t) = −∇f(x(t))

Euler applied to gradient flow with tk = t0 + kh, xk ≈ x(tk)

xk+1 − xk
h

= −∇f(xk)⇔ xk+1 = xk − h∇f(xk)

Model Nesterov Accelerated Gradient using an ODE

ẍ(t) + 3
t
ẋ(t) +∇f(x(t)) = 0⇔


xk = yk−1 − s∇f (yk−1)

yk = xk + k − 1
k + 2 (xk − xk−1)



Derivation of Su-Boyd-Candès ODE
xk+1 − xk√

s
=
(

1− 3
k + 2

)
xk − xk−1√

s
−
√
s∇f (yk) .

Introduce the Ansatz xk ≈ x(k
√
s) for t ≥ 0. Put k = t/

√
s.

Then as the step size s goes to zero, x(t) ≈ xt/√s = xk

(xk+1 − xk) /
√
s = ẋ(t) + 1

2 ẍ(t)
√
s+ o(

√
s),

(xk − xk−1) /
√
s = ẋ(t)− 1

2 ẍ(t)
√
s+ o(

√
s)

and
√
s∇f (yk) =

√
s∇f(x(t)) + o(

√
s). Omit o(

√
s) term.

ẋ(t) + 1
2 ẍ(t)

√
s = (1− 3

√
s

t
)(ẋ(t)− 1

2 ẍ(t)
√
s)−

√
s∇f(x(t))

By comparing the coefficients of
√
s, we obtain

ẍ+ 3
t
ẋ+∇f(x) = 0



Convergence in Continuous Time

Define E(t) = t2 (f(x(t))− f?) + 2‖x+ tẋ/2− x?‖2

Ė = 2t (f(x)− f?) + t2〈∇f, ẋ〉+ 4
〈
x+ t

2 ẋ− x
?,

3
2 ẋ+ t

2 ẍ
〉

Substituting 3ẋ/2 + tẍ/2 with −t∇f(x)/2 gives

Ė = 2t (f(x)− f?) + 4 〈x− x?,−t∇f(x)/2〉
= 2t (f(x)− f?)− 2t 〈x− x?,∇f(x)〉
≤ 0

Lyapunov argument gives O(1/t2) rate



An ODE with Unprecedented Level of Generality

ẍ(t) + a

t
ẋ(t) + β(t)∇2f(x(t))ẋ(t) + γ(t)∇f(x(t)) = 0

Denote w(t) = γ(t)− β̇(t)− β(t)/t. Provided the conditions

γ(t) > β̇(t) + β(t)
t
, tẇ(t) 6 (a− 3)w(t), for all t > t0,

the solution trajectory x(t) of above ODE satisfies

f(x(t))− f? = O
( 1
t2w(t)

)
as t→ +∞∫ +∞

t0
t2β(t)w(t)‖∇f(x(t))‖2 dt < +∞

This ODE can be written as a first order system

ẋ(t) = v(t)− x(t)− β(t)∇f(x(t)),
v̇(t) = (1− a/t)ẋ(t) + (β̇(t)− γ(t))∇f(x(t)).



The Effects of the Hessian-driven Damping Term
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Figure: f(x) = (x1 + x2)2 with different a, β, γ

The Hessian-driven damping term ∇2f(x(t))ẋ(t) is inspired
from Newton’s flow ∇2f(x(t))ẋ(t) +∇f(x(t)) = 0

Reduce the oscillation; Accelerate converge; Stabilize
discretization



From the Stopping Index N to the Stopping Time T

T = inf{t | ‖∇f(x(t))‖ ≤ ε, t ≥ t0}.

We further write T = T (f, a, β, γ) to emphasize the dependence
on the variables f, a, β, γ and take x0, v0, t0, ε as exogenous
variables.

T is the infimum of the set {t : ‖∇f(x(t))‖2 = ε2}.

Suppose θ is one of the variables a, β and γ, the variation of
both sides with respect to θ satisfies

2∇f(x(T ))>∇2f(x(T ))
(
ẋ(T )δT

δθ
+ δxT

δθ

)
= 0,

where xT represents the value of x at fixed time T .



Stopping Time Continued

Stopping time is a standard concept in random process. We
first introduce it to model fast algorithms, which does not need
ground truth solutions.

PROS

Pretty natural and general

Differentiable with respect to variables a, β and γ

CONS

Hard to generalize in the discrete time case

Definition of the stopping time of a function value-based
optimality condition involves f?



A Continuous Model for Fast Algorithms

Let w(t) = γ(t)− β̇(t)− β(t)/t. We want to find a stable
solution trajectory that converges fast on a task distribution:

min
a,β,γ

ET [T (f, a, β, γ)],

s.t. T (f, a, β, γ) = inf{t | ‖∇f(x(t))‖ ≤ ε, t ≥ t0}, where

ẍ(t) + a

t
ẋ(t) + β(t)∇2f(x(t))ẋ(t) + γ(t)∇f(x(t)) = 0,

γ(t) > β̇(t) + β(t)
t
, tẇ(t) 6 (a− 3)w(t), ∀t > t0,

(sγ(t)−
√
sβ(t))∇2f(x(t)) �

√
sa/tI, ∀t > t0,

(2
√
sβ(t)− sγ(t))∇2f(x(t)) � (4− 2

√
sa/t)I, ∀t > t0.

The last two constraints come from the linear stability in
discretization, where

√
s denotes the step size of forward Euler

scheme.



Arbitrary Fast Convergence?

Recall the convergence rate

f(x(t))− f? = O
( 1
t2w(t)

)
as t→ +∞

For any p ∈ N, simply setting β(t) ≡ 0 and a = p+ 1, γ(t) = tp−2

ẍ(t) + p+ 1
t

ẋ(t) + tp−2∇f (x(t)) = 0

⇒w(t) = γ(t)− β̇(t)− β(t)/t = tp−2

The convergence rate is f (x(t))− f? 6 O (1/tp).

We get arbitrary fast convergence rate with convex
differentiable functions in continuous time case.

What is wrong here?



Direct Runge-Kutta Discretization is Unstable
Consider the logistic regression problem

min
x∈Rn

f(x) = 1
N

N∑
i=1

log(1 + exp(−bi〈ai, w〉)),

where the data pairs {a,bi} ∈ Rn × {0, 1}, i ∈ [N ]
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Figure: Directly applying 4-th Runge-Kutta with p = 5 diverges.



How to discretize: Methodologies
It is hard to obtain stable discretization!

“Empirically, we find that the algorithm is unstable. Even
for the simple case in which f is a quadratic function in
two dimensions, ... eventually the oscillation increases and
the iterates shoot off to infinity”—[Wibisono et al., 2016]

Geometric numerical integrator: the existence of
tp−2∇f(x(t)) makes the stepsize decrease to 0

Tradeoff between higher order convergence and large step
stability

Momentum restarting: hard to analysis; not stable enough;
a short-term solution

Why not selecting an ODE to fit an integrator?

In natural science, ODEs can not be changed

In optimization, ODEs can vary in a large range



Optimization is Not Numerical Solution

Figure: Discretization in Optimization

In optimization, we do not need an exact numerical solution

Provided the discretization has linear stability, we will approach
the minimizer finally!



Stability Implies Convergence

Linear Stability is a leading indicator!

Linear stability excesses 1 before the function value diverges

A new regularization condition: Linear Stability

This is a long-term solution



Stability Analysis for AVD-DIN System

Consider the forward Euler method with step length
√
s

x(t+ 2
√
s)− 2x(t+

√
s) + x(t)

s

+
(
α/t+ β(t)∇2f(x(t))

)
· x(t+

√
s)− x(t)√
s

+ γ(t)∇f(x(t)) = 0.

The characteristic polynomial is

|λ2I−b(t,
√
s)λI +(1−

√
sα/t)I +(sγ(t)−

√
sβ(t))∇2f(x(t))| = 0

where b(t,
√
s) = 2−

√
s(α/t+ β(t)∇2f(x(t))).



The necessary and sufficient condition

The necessary and sufficient condition for the roots (may be
complex) of r2 + µr + ν = 0, µ, ν ∈ R lie in the unit cycle is

ν ≤ 1, ν ≥ µ− 1, ν ≥ −µ− 1.

We get a necessary and sufficient condition for our
discretization to be stable:

(sγ(t)−
√
sβ(t))∇2f(x(t)) �

√
sα/tI,

(2
√
sβ(t)− sγ(t))∇2f(x(t)) � (4− 2

√
sα/t)I,

sγ(t)∇2f(x(t)) � 0.



Training a Polynomial Surrogate Model
Given a degree k ∈ N, and a step size s > 0, we choose

a = k + 3, β(t) =
k∑
i=0

pit
i, γ(t) = β(t)/

√
s,

with pi ≥ 0. When t0 is sufficiently large, this choice
automatically satisfies

γ(t) > β̇(t) + β(t)
t
, tẇ(t) 6 (a− 3)w(t), ∀t > t0;

(sγ(t)−
√
sβ(t))∇2f(x(t)) �

√
sa/tI, ∀t > t0.

Dropping above constraints gives:

min
p

ET [T (f, p)],

s.t. T (f, p) = inf{t | ‖∇f(x(t))‖ ≤ ε, t ≥ t0}, where

ẍ(t) + a

t
ẋ(t) + β(t)∇2f(x(t))ẋ(t) + γ(t)∇f(x(t)) = 0,

√
sβ(t)λmax(∇2f(x(t))) ≤ 4− 2

√
sa/t, ∀t > t0.



Training Algorithm

REQUIRE: Training set D, which sampled from the probability
measure T of f . Degree k of the polynomials. Initial value x0.
Step size

√
s of forward Euler scheme. Events {ε0, ε1, . . . , εM}.

Initial value of the coefficient p0. Training epoch Nepoch.

ENSURE: A differential equation that adapts to the probability
measure T of f , converges fast and possesses stability under
forward Euler discretization with step size

√
s.



Algorithm 1 Stochastic Projected Gradient Descent for Poly-
nomial Surrogate Problem

1: for nepoch = 1, 2, . . . , Nepoch do
2: for nsample = 1, 2, . . . , |D| do
3: Randomly draw one sample f from D.
4: Simulate the solution trajectory x(t) of

ẍ(t) + a

t
ẋ(t) + β(t)∇2f(x(t))ẋ(t) + γ(t)∇f(x(t)) = 0.

5: Record the event times Tm = inf{t | ‖∇f(x(t))‖ ≤
εm, t ≥ t0} for m = 0, 1, . . . ,M

6: Compute the derivative of TM with respect to p and
Perform a step of the gradient descent: p← p− ∂TM

∂p .
7: Denote the polyhedra

{p |
√
sβ(Tm)λmax(∇2f(x(Tm))) ≤ 4− 2

√
sa/Tm, ∀m}

as P. Project p with respect to it: p← ProjP(p).
8: end for
9: end for



Training Result in Different Datasets
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Figure: Comparison of the training process in different datasets



Discrete time testing

xk+1 − xk√
s

= vk − xk − βk∇f(xk),

vk+1 − vk√
s

=
(
1− α/tk+1

)
(vk − xk+1 − βk+1∇f(xk+1))

+
(
β̇k+1 − γk+1

)
∇f(xk+1).

PROS:

can be extended to infinite iterates;

fully explainable; has convergence guarantee;



Testing Results
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Figure: Comparison of the forward Euler discretization applied to
ODE trained in different datasets



Our Motivation&Methodology

A learning to optimize framework with theoretical guarantee

First give a condition that guarantees convergence

Then search parameters under this guarantee

Learning and adaptivity are equivalent

Illustrate this using gradient descent and adaptive methods

Examples

Nonsmooth: [Banert et al., 2020]

Inexact gradient: [Banert et al., 2021]



Future Directions

Precondition (dimension dependent)

Investigate discrete scheme directly (We solve the
continuous time model numerically)

New adaptive methods (In this work, the ODE remembers
the local curvature first, then using this information to
discretize. Another way is estimates these quantities
adaptively.)

Apply this paradigm to other problems (Composite,
Monotone inclusion, ADMM, Primal-dual, ...)

Closed-loop control? (Continuous adaptivity)

Direct solve the equivalent form of PEP!?



Epilogue

A general viewpoint of optimization and learning?

Parameterization gives a general way for producing
optimization methods

Best papers preferring analytical solutions, e.g. Analytic
LISTA, Analytic DPM (PnP, White-Box Net)

Learning researchers are willing to fire themselves

The most important thing is the meaning of each parameter
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