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ANNs are powerful tools in physics and other scientific disciplines

Figure: Recurrent networks of N binary nodes si (0
or 1), with connection weights wij .

▶ Hopfield Network: E = −1
2

∑
i ,j wijsi sj

▶ Boltzmann Machine:
E = −

∑
i ,j wijsi sj −

∑
i θi si

▶ Restricted Boltzmann Machine (RBM):
E = −

∑
i ,j wijvihj −

∑
i bivi −

∑
j cjhj
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Standard Form of a Linear Programming Problem

min
x

c⊤x ,

s.t. Ax ≤ b,

x ≥ 0.

(SF)

▶ x ∈ Rn is the decision variable

▶ A ∈ Rm×n is a matrix of constraint coefficients

▶ c ∈ Rn is a vector of coefficients for the objective function

▶ we denote the instance (SF) as I = (A, b, c)
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Weighted Bipartite Graphs

▶ A weighted bipartite graph is a tuple (U,V ,E ,w)

▶ U and V are two disjoint sets, and U ∪ V contains all vertices

▶ E ⊆ U × V is the set of edges, where each edge connects a vertex in U to a vertex in V

▶ w : E → R is a function that assigns the weight for each edge

min
x∈R2

2x1 + 3x2,

s.t. x1 + 2x2 ≤ 1,

2x1 + x2 ≤ 2,

x1 ≥ 0, x2 ≥ 0.

v1

v2

u1

u2

hV1 = (2)

hV2 = (3)

hU1 = (1)

hU2 = (2)

1

2
2

1

Figure: An example of LP-graph
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Encoding LPs as Graphs

▶ U = {u1, u2, . . . , um} represents the n dimensions of the decision variable x

▶ V = {v1, v2, . . . , vn} corresponds to the m inequality constraints

▶ The set E contains m × n edges. We denote Ei ,j = (ui , vj)

▶ The function w assigns the weights according to w(Ei ,j) = Ai ,j

▶ For i-th constraint, the node ui is associated with a feature vector hUi = (bi ) ∈ HU

▶ For j-variable, the node vj has a feature vector hVj = (cj) ∈ HV
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Graph neural networks for LP

▶ Embedding: Given learnable functions f Uin : HU → Rd0 and f Vin : HV → Rd0 ,

h0,Ui = f Uin (h
U
i ), h0,Vj = f Vin (h

V
j ), i = 1, 2, . . . ,m, j = 1, 2, . . . , n

▶ Update the hidden states: Let f Ul , f Vl : Rdl−1 → Rdl and gU
l , gV

l : Rdl−1 × Rdl → Rdl ,

hl ,Ui = gU
l

(
hl−1,U
i ,

n∑
j=1

Ei ,j f
V
l (hl−1,V

j )

)
, i = 1, 2, . . . ,m, l = 1, 2, . . . , L

hl ,Vj = gV
l

(
hl−1,V
j ,

m∑
i=1

Ei ,j f
U
l (hl−1,U

i )

)
, j = 1, 2, . . . , n, l = 1, 2, . . . , L

▶ Output layer of the single-output GNN: Learnable function fout : RdL × RdL → R:

yout = fout

( m∑
i=1

hL,Ui ,
n∑

j=1

hL,Vj

)
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Graph Neural Networks for LP

▶ Output of the vertex-output GNN is defined with f Vout : RdL × RdL × RdL → R:

yout(vj) = f Vout

( m∑
i=1

hL,Ui ,

n∑
j=1

hL,Vj , hL,Vj

)
, j = 1, 2, · · · , n

▶ Denote collections of single-output and vertex-output GNNs with FGNN and FV
GNN:

FGNN ={F : Gm,n ×HU
m ×HV

n → R | F yields single-output }
FV
GNN ={F : Gm,n ×HU

m ×HV
n → Rn | F yields vertex-output }
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Definition

▶ Feasibility mapping. The feasibility mapping is a classification function

Φfeas : Gm,n ×HU
m ×HV

n → {0, 1},

where Φfeas(G ,H) = 1 if the LP is feasible and Φfeas(G ,H) = 0 otherwise

▶ Optimal objective value mapping. Denote

Φobj : Gm,n ×HU
m ×HV

n → R ∪ {∞,−∞},

as the optimal objective value mapping. For any (G ,H) ∈ Gm,n ×HU
m ×HV

n , Φobj(G ,H)
is the optimal objective value of the LP problem associated with (G ,H)

▶ Optimal solution mapping. For any (G ,H) ∈ Φ−1
obj(R). The mapping

Φsolu : Φ−1
obj(R)→ Rn,

maps (G ,H) ∈ Φ−1
obj(R) to the optimal solution with the smallest ℓ2-norm
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GNN has strong enough separation power to represent LP

Theorem

Given any two LP instances (G ,H), (Ĝ , Ĥ) ∈ Gm,n ×HU
m ×HV

n , if F (G ,H) = F (Ĝ , Ĥ) for all
F ∈ FGNN , then they share some common characteristics:

(i) Both LP problems are feasible or both are infeasible, i.e., Φfeas(G ,H) = Φfeas(Ĝ , Ĥ).

(ii) The two LP problems have the same optimal objective value: Φobj(G ,H) = Φobj(Ĝ , Ĥ).

(iii) If both problems are feasible and bounded, they have the same optimal solution with the
smallest ℓ2-norm up to a permutation, i.e., Φsolu(G ,H) = σV (Φsolu(Ĝ , Ĥ)) for some
σV ∈ Sn.

Furthermore, if FV (G ,H) = FV (Ĝ , Ĥ), ∀FV ∈ FV
GNN , then (iii) holds without taking

permutations, i.e., Φsolu(G ,H) = Φsolu(Ĝ , Ĥ).

10 / 60



GNN is a good classifier for LP instances

Theorem

Given any measurable X ⊂ Gm,n ×HU
m ×HV

n with finite measure, for any ϵ > 0, there exists
some F ∈ FGNN, such that

Meas
({

(G ,H) ∈ X : IF (G ,H)>1/2 ̸= Φfeas(G ,H)
})

< ϵ,

where I· is the indicator function, i.e., IF (G ,H)>1/2 = 1 if F (G ,H) > 1/2 and IF (G ,H)>1/2 = 0
otherwise.

Corollary

For any D ⊂ Gm,n ×HU
m ×HV

n with finite instances, there exists F ∈ FGNN that

IF (G ,H)>1/2 = Φfeas(G ,H), ∀ (G ,H) ∈ D.
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GNN can approximate optimal objective value and solution mappings

Corollary

For any D ⊂ Gm,n ×HU
m ×HV

n with finite instances, there exists F1 ∈ FGNN such that

IF1(G ,H)>1/2 = IΦobj(G ,H)∈R, ∀ (G ,H) ∈ D,

and for any δ > 0, there exists F2 ∈ FGNN, such that

|F2(G ,H)− Φobj(G ,H)| < δ, ∀ (G ,H) ∈ D ∩ Φ−1
obj(R).

Corollary

Given any D ⊂ Φ−1
obj(R) ⊂ Gm,n ×HU

m ×HV
n with finite instances, for any δ > 0, there exists

FV ∈ FV
GNN, such that

∥F (G ,H)− Φsolu(G ,H)∥ < δ, ∀ (G ,H) ∈ D.
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An ODE-based Method for Solving LPs

▶ Consider the LP of the general from

min
x

c⊤x ,

s.t. Ax ≤ b

▶ The corresponding Lagrangian is

L(x , u) = c⊤x + u⊤(Ax − b)

▶ The corresponding KKT conditions are

c + A⊤u = 0,

u⊤(Ax − b) = 0,

Ax − b ≤ 0,

u ≥ 0
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ODE system for modeling LPs

▶ Let x(t) : R→ Rn, u(t) : R→ Rm, and y(t) =
(
x(t)⊤, u(t)⊤

)⊤
▶ The following ODE system models the LP problem via the KKT conditions

dy

dt
= Φ(y) =

(
dx
dt
du
dt

)
=

(
−
(
c + A⊤(u + Ax − b)+

)
(u + Ax − b)+ − u

)
, y(t0) = y0, t ∈ [0,T ]

Theorem

y∗ =
(
(x∗)⊤, (u∗)⊤

)⊤
is an equilibrium point of the ODE system if and only if it is a satisfied

point of the KKT conditions. Furthermore, given arbitrary initial point, the ODE system
satisfies

lim
t→∞

dist(y(t),Θ∗) = 0, where Θ∗ = {y∗|y∗ = (x∗)⊤, (u∗)⊤ solves the KKT conditions }.
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PINNs for Linear Programming: A Proof of Concept

▶ Let the neural network model be defined as

ŷ(t, I ;w) = (1− e−t)NN(t, I ;w), t ∈ [0,T ]

▶ The multiplier (1− e−t) guarantees ŷ(0, I ;w) = 0 regardless of weights w

▶ The endpoint
ŷ(T , I ;w) = (1− e−T )NN(T , I ;w)

represents an approximate solution to the KKT conditions associated with instance I

▶ The loss function is defined as

E (w) =
1

|D| ∗ |T|
∑
Ij∈D

∑
ti∈T

ℓ

(
∂ŷ(ti , Ij ;w)

∂t
,Φj(ŷ(ti , Ij ;w))

)
where D refers to the set of instances, and each Ij ∈ Θ relate to an ODE system Φj

16 / 60



Algorithmic Framework

Algorithm Solving LP problems by neural networks

Require: A time range [0,T ]
Require: A probability distribution P for generating I
Function Main:
while True do
Generate D, a set of I ∼ P according to the given probability distribution P
Uniformly sample T, a batch of t ∼ U(0,T ) from the interval [0,T ]
Forward propagation: Compute E (w) based on the D and T
Backward propagation: Update w by ∇E (w)
Stopping criteria check

end while
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Interior-point Methods (IPMs) for Linear Optimization

▶ An instance I of an LP is a tuple (A,b, c), where A ∈ Qm×n, and b ∈ Qm and c ∈ Qn

▶ Linear optimization: finding a vector x∗ in Qn that minimizes c⊤x∗ over the feasible set

F (I ) = {x ∈ Qn | Ajx ≤ bj for j ∈ [m] and xi ≥ 0 for i ∈ [n]}

▶ Consider a perturbed version of the LP for some µ > 0:

min
x∈Qn

c⊤x− µ[1⊤ log(b− Ax) + 1⊤ log(x)]

▶ Let si = µ/xi , rj = Ajx− bj , and wj = µ/rj . The first-order optimality conditions write

Ax∗ − r∗ = b,

A⊤w∗ + s∗ = c , x∗,w∗, s∗, r∗ ≥ 0,

x∗i s
∗
i = µ, i ∈ [n],

w∗
i r

∗
i = µ, j ∈ [m]
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Interior-point Methods (IPMs) for Linear Optimization

1. Let σ ∈ (0, 1). IPMs start from an initial positive point (x0,w0, s0, r0) > 0

2. Compute the Newton step for the perturbed problem at barrier parameter σµ
A 0 0 −I
0 A⊤ I 0

D(s) 0 D(x) 0
0 D(r) 0 D(w)



∆x
∆w
∆s
∆r

 =


b − Ax + r
c − A⊤w − s

σµ1− D(x)D(s)1
σµ1− D(w)D(r)1


3. Take a step in that direction with length α > 0, such that the resulting point

(x ′,w ′, s ′, r ′) = (x ,w , s, r) + α(∆x ,∆w ,∆s,∆r) satisfies (x ′,w ′, s ′, r ′) > 0
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Interior-point Methods (IPMs) for Linear Optimization

▶ The above system can be simplified as follows. First, we can infer that

∆s = σµD(x)−11− s − D(x)−1D(s)∆x ,

∆r = σµD(w)−11− r − D(w)−1D(r)∆w ,

which implies that

A∆x + D(w)−1D(r)∆w = b − Ax + σµD(w)−11,

A⊤∆w − D(x)−1D(s)∆x = c − A⊤w − σµD(x)−11

▶ Therefore, for Q = AD(s)−1D(x)A⊤ + D(w)−1D(r), we only need to compute

∆x = D(s)−1D(x)[A⊤∆w − c + A⊤w + σµD(x)−11],

Q∆w = b − Ax + σµD(w)−11+ AD(s)−1D(x)[c − A⊤w − σµD(x)−11]
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Algorithmic Frameworks for IPMs

Algorithm Practical IPM for LPs

Require: An LP instance (A,b, c), a barrier reduction hyperparameter σ ∈ (0, 1) and initial
values (x0,w0, s0, r0, µ0) such that (x0,w0, s0, r0) > 0 and µ0 = (xT0 s0 + wT

0 r0)/(n +m)
1: repeat
2: Compute ∆w by solving the linear system

Q∆w = b − Ax + σµD(w)−11+ AD(s)−1D(x)[c − ATw − σµD(x)−11]
for Q = AD(s)−1D(x)AT + D(w)−1D(r).

3: ∆x ← D(s)−1D(x)[AT∆w − c + ATw + σµD(x)−11]
4: ∆s ← σµD(x)−11− s −D(x)−1D(s)∆x
5: ∆r ← σµD(w)−11− r −D(w)−1D(r)∆w
6: Find the largest α > 0: mini ,j{(x + α∆x)i (s + α∆s)i , (w + α∆w)j(r + α∆r)j} ≥ 0
7: Update (x ,w , s, r) += 0.99α(∆x ,∆w ,∆s,∆r), µ← σµ
8: until convergence of (x ,w , s, r)
9: Return the point x , which solves LP.
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Weighted Tripartite Graph

▶ An undirected weighted graph has three disjoint sets of the vertices U,V and W

▶ Denote U = {u1, u2, . . . , um},V = {v1, v2, . . . , vn} and W = {w1,w2, . . . ,wl}

▶ Each edge connects two vertices from the different sets between them

▶ If there is an edge between the node ui and vj , we denote this edge as (ui , vj)

▶ All the edges constitute the set E and we associate each edge with a weight
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Representing LPs as Weighted Tripartite Graphs

▶ We represent an LP instance I = (A, b, c) using an
undirected weighted tripartite graph
G(I ) = {V (I ),C (I ), {o},Evc(I ),Eco(I ),Eov(I )}

▶ V (I ) contains the vertices that represent the
decision variables

▶ C (I ) contains the vertices that represent the
constraints

▶ o is a vertex that represents the objective function.
For each vertex in V (I ) and C (I ), there is an edge
that connects o with it

c1

c2

x1

x2

x3

o

Figure: Representing an LP instance
with two constraints and three variables
as a tripartite graph.
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Representing LPs as Weighted Tripartite Graphs

▶ Evc(I ) is the set that contains all edges between the vertices in V (I ) and C (I ). For the
i-th vertex vi in V (I ) and j-th vertex cj in C (I ), if Ai ,j does not equal to 0, then there is
an edge (vi , cj) ∈ Evc(I )(I ) connects them and the weight is assigned as Ai ,j

▶ Eco(I ) is the set that contains all edges between the vertices in C (I ) and o. The weight
is set to bj for edge (cj , o)

▶ Eov(I ) is the set that contains all edges between the vertices in V (I ) and o. The weight
is set to ci for edge (vi , o)
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Theoretical Foundation: MPNNs can emulate IPMs

Theorem

There exists an MPNN fMPNN,IPM1 composed of O(m) message-passing steps that
reproduces an iteration of IPMs, in the sense that for any LP instance I = (A,b, c) and any
iteration step t ≥ 0, fMPNN,IPM1 maps the graph G (I ) carrying [xt , st ] on the variable nodes
and [wt , rt ] on the constraint nodes to the same graph G (I ) carrying [xt+1, st+1] on the
variable nodes and [wt+1, rt+1] on the constraint nodes.

c1

c2

x1

x2

x3

o

Update constraints Update objective Update variables Predict values IPM iteration

c1

c2

x1

x2

x3

o

c1

c2

x1

x2

x3

o

Iterate

F (I )
a1

a2

Figure: IPM-MPNNs emulate interior-point methods.
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Asynchronous Updates of the IPM-MPNN

▶ Let h(t)
c ∈ Rd , d > 0, be the node features of a constraint node c ∈ C (I ) at iteration

t > 0, and let h(t)
v ∈ Rd and h(t)

o ∈ Rd be the node features of a variable node
v ∈ V (I ) and the objective node o at iteration t, respectively

▶ Let eco , evc , evo denote the edge weights

▶ The parameterized message function MSG
(t)
v→c maps variable node features and

corresponding edge features evc , to a vector in Rd

▶ The parameterized function MSG
(t)
o→c maps the current node features of the objective

node and edge features eoc to a vector in Rd
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Asynchronous Updates of the IPM-MPNN

▶ The parameterized function UPD
(t)
c maps the constraint node’s previous features, the

outputs of MSG
(t)
o→c and MSG

(t)
v→c to a vector in Rd

▶ In the first pass, we update the embeddings of constraint nodes from the embeddings of
the variable nodes and of the objective node. That is, let c ∈ C (I ) be a constraint node
and let t > 0, then

h(t)
c :=UPD

(t)
c

[
h(t−1)
c ,MSG

(t)
o→c

(
h(t−1)
o , eoc

)
,

MSG
(t)
v→c

(
{{(h(t−1)

v , evc) | v ∈ N (c) ∩ V (I )}}
)]

28 / 60



Asynchronous Updates of the IPM-MPNN

▶ Next, we update the objective node’s features depending on variable and constraint
node features,

h(t)
o :=UPD

(t)
o

[
h(t−1)
o ,MSG

(t)
c→o

(
{{h(t)

c , eco | c ∈ C (I )}}
)
,

MSG
(t)
v→o

(
{{h(t−1)

v , evo | v ∈ V (I )}}
)]

▶ Subsequently, we update the representation of a variable node v ∈ V (I ) from the
constraints nodes and objective node,

h(t)
v :=UPD

(t)
v

[
h(t−1)
v ,MSG

(t)
o→v

(
h(t)
o , eov

)
,

MSG
(t)
c→v

(
{{h(t)

c , ecv | c ∈ N (v) ∩ V (C )}}
)]

▶ Finally, we map each variable node feature h(t)
v to MLP(h(t)

v ) ∈ R, and concatenate the
outputs in the final prediction z (t) ∈ Rn
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Loss Function

▶ Variable supervision Let N denote the number of training samples. We set

Lvar :=
1

N

N∑
i=1

⊤∑
t=1

αT−t∥y (t)
i − z (t)

i ∥
2

2

▶ Objective supervision We do not predict the objective directly but calculate it via
cTz (t) instead. Suppose the ground-truth values are given by cTy (t), we have

Lobj :=
1

N

N∑
i=1

⊤∑
t=1

αT−t
[
cT

(
y (t)
i − z (t)

i

)]2
▶ Constraint supervision Finally, we penalize constraint violations:

Lcons :=
1

N

N∑
i=1

⊤∑
t=1

αT−t∥ReLU(Aiz
(t)
i − bi )∥

2

2
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Numerical Results

▶ We combine the above three loss terms into the loss function

L := wvarLvar + wobjLobj + wconsLcons

▶ GCNs (Graph Convolutional Networks): GCNs aggregate information from
neighboring nodes using a localized filter, effectively learning node representations based
on their local graph structure

▶ GINs (Graph Isomorphic Networks): GINs improve upon GCNs by using more
expressive aggregation functions, enabling them to distinguish between non-isomorphic
graphs that GCNs might find similar

▶ GENs (Generalized Graph Neural Networks): GENs offer a broader framework for
graph representation learning by allowing for flexible message-passing mechanisms and
aggregation schemes beyond the limitations of GCNs and GINs
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Numerical Results: Bipartite v.s. Tripartite

Table: Results of our proposed IPM-MPNNs (✓) versus bipartite representation ablations (✗). We
report the relative objective gap and the constraint violation, averaged over all three runs. We print
the best results per target in bold.

Tri. MPNN
Small instances Large instances

Setcover Indset Cauc Fac Setcover Indset Cauc Fac

O
b
je
ct
iv
e
g
a
p
[%

]

✓

GEN 0.319±0.020 0.119±0.003 0.612±0.049 0.549±0.112 0.629±0.086 0.158±0.035 0.306±0.047 0.747±0.083

GCN 0.418±0.008 0.103±0.006 0.682±0.029 0.578±0.015 0.420±0.047 0.094±0.005 0.407±0.038 0.914±0.141

GIN 0.478±0.038 0.146±0.011 0.632±0.036 0.810±0.221 0.711±0.115 0.126±0.021 0.378±0.052 0.911±0.132

✗

GEN 8.310±1.269 0.735±0.032 1.417±0.009 2.976±0.013 15.170±6.844 0.320±0.008 0.851±0.122 2.531±0.025

GCN 5.523±0.133 0.639±0.009 1.394±0.081 3.031±0.059 6.092±0.456 0.298±0.009 0.766±0.093 2.535±0.034

GIN 5.592±0.179 0.634±0.021 1.202±0.016 2.996±0.031 5.835±1.917 0.290±0.005 0.810±0.140 2.660±0.062

C
o
n
st
ra
in
t
vi
o
la
ti
o
n

✓

GEN 0.002±0.0002 0.0006±0.00003 0.003±0.0007 0.002±0.001 0.009±0.001 0.0015±0.0003 0.0004±0.0002 0.002±0.001

GCN 0.002±0.001 0.0003±0.0001 0.002±0.00007 0.002±0.0002 0.009±0.001 0.0005±0.00004 0.001±0.0005 0.001±0.0004

GIN 0.004±0.001 0.0006±0.00008 0.001±0.0001 0.002±0.0005 0.008±0.002 0.0006±0.0001 0.002±0.0008 0.002±0.0007

✗

GEN 0.181±0.023 0.006±0.0003 0.006±0.001 0.011±0.004 0.309±0.025 0.004±0.0002 0.006±0.001 0.003±0.001

GCN 0.207±0.006 0.004±0.001 0.002±0.001 0.006±0.0003 0.267±0.049 0.003±0.0004 0.004±0.001 0.002±0.0003

GIN 0.211±0.007 0.003±0.0002 0.003±0.001 0.008±0.002 0.236±0.014 0.003±0.0004 0.004±0.002 0.003±0.0002
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Numerical Results: ODE Baseline

Table: Comparing between
IPM-MPNNs and the ODE
method on 1000 mini-sized
instances. We report the
average relative objective
gap, constraint violation,
training time over three runs,
and maximal GPU memory
allocated. We print the best
results per target in bold.

Method MPNN Setcover Indset Cauc Fac

O
b
j.
ga
p
[%

]

ODE
GEN 14.915±0.425 6.225±0.097 13.845±0.554 20.560±0.059

GCN 14.545±0.055 6.148±0.071 12.945±0.385 20.690±0.037

GIN 15.050±0.228 6.474±0.114 13.470±1.145 21.010±0.529

Ours
GEN 2.555±0.122 1.580±0.095 2.733±0.074 1.449±0.255

GCN 2.375±0.062 1.447±0.152 2.769±0.091 1.478±0.154

GIN 2.740±0.3184 1.404±0.153 2.847±0.091 1.328±0.201

C
on

st
ra
in
t
vi
o.

ODE
GEN 0.072±0.006 0.046±0.002 0.025±0.008 0.020±0.001

GCN 0.049±0.012 0.048±0.008 0.025±0.0002 0.020±0.0005

GIN 0.064±0.005 0.043±0.008 0.024±0.005 0.014±0.004

Ours
GEN 0.023±0.002 0.005±0.0001 0.015±0.003 0.013±0.003

GCN 0.030±0.003 0.005±0.0006 0.017±0.002 0.005±0.0006

GIN 0.023±0.005 0.005±0.0003 0.014±0.001 0.006±0.0006

T
im

e
[s
] ODE

GEN 47.829 51.283 63.068 96.298
GCN 57.196 80.133 79.606 34.297
GIN 55.918 64.628 39.904 62.448

Ours
GEN 10.177 9.617 9.946 11.124
GCN 18.964 8.688 7.368 8.834
GIN 6.042 8.096 8.881 10.771

M
em

or
y
(G

B
)

ODE
GEN 16.455 25.931 23.354 44.520
GCN 16.489 34.003 23.805 10.640
GIN 18.238 30.101 13.482 24.713

Ours
GEN 0.091 0.088 0.101 0.148
GCN 0.201 0.134 0.069 0.142
GIN 0.094 0.073 0.148 0.187
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Numerical Results: Size generalization

Table: Size generalization. We report the relative objective gap and constraint violation on larger test
instances. Numbers represent mean and standard deviation across multiple pretrained models.

Train size Inference size GEN GCN GIN
Rows Cols Rows Cols Obj. (%) Cons. Obj. (%) Cons. Obj. (%) Cons.

S
et
c.

[300, 500] [500, 700]

500 700 0.717±0.158 0.516±0.010 0.511±0.047 0.509±0.004 1.034±0.237 0.486±0.023

550 750 0.917±0.317 0.552±0.012 0.871±0.252 0.543±0.003 2.318±1.411 0.497±0.032

600 700 0.993±0.211 0.573±0.015 0.705±0.125 0.565±0.012 1.491±0.512 0.521±0.045

500 800 0.902±0.323 0.528±0.008 1.058±0.441 0.509±0.004 12.538±16.027 0.485±0.050

600 800 1.004±0.407 0.589±0.014 1.556±0.588 0.568±0.005 12.217±14.715 0.486±0.071

In
d
se
t.

[584, 990] [300, 500]

[978, 994] 500 0.128±0.027 0.299±0.001 0.099±0.008 0.303±0.001 0.129±0.031 0.304±0.001

[1028, 1044] 525 0.157±0.063 0.300±0.001 0.101±0.013 0.304±0.001 0.111±0.017 0.305±0.001

[1076, 1094] 550 0.300±0.186 0.301±0.002 0.096±0.022 0.303±0.001 0.177±0.097 0.304±0.001

[1128, 1144] 575 1.402±1.036 0.305±0.006 0.146±0.044 0.304±0.001 0.380±0.367 0.304±0.002

[1178, 1194] 600 4.552±3.153 0.317±0.015 0.408±0.317 0.304±0.001 0.647±0.725 0.304±0.002

C
a
u
c.

[320, 562] [300, 499]

[530, 564] 500 0.333±0.134 0.257±0.001 0.318±0.048 0.259±0.001 0.344±0.108 0.259±0.001

[596, 646] 500 0.363±0.131 0.267±0.002 0.519±0.069 0.270±0.003 0.576±0.165 0.271±0.001

[652, 720] 500 0.524±0.039 0.284±0.001 1.255±0.523 0.289±0.007 0.944±0.114 0.289±0.001

[559, 596] 600 7.325±3.615 0.257±0.002 0.587±0.268 0.255±0.001 1.014±0.845 0.263±0.006

[633, 677] 600 7.965±3.941 0.263±0.002 0.868±0.441 0.258±0.003 1.375±0.693 0.269±0.005

F
a
c. [441, 900] [420, 870]

961 930 0.912±0.251 0.178±0.006 1.154±0.206 0.173±0.007 1.452±0.528 0.178±0.003

936 900 1.320±0.347 0.148±0.009 1.615±0.322 0.145±0.009 1.736±0.558 0.153±0.004

936 910 0.964±0.063 0.209±0.005 1.538±0.526 0.211±0.007 1.538±0.422 0.215±0.006

1116 1080 1.502±0.704 0.163±0.009 3.540±3.134 0.161±0.006 2.288±0.659 0.167±0.005

1296 1260 1.808±0.566 0.173±0.009 7.629±7.577 0.179±0.008 13.522±8.027 0.163±0.021
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Numerical Results: Inference Profiling

Table: Comparing IPM-MPNNs’ inference time to SciPy’s IPM implementation and our Python-based
IPM solver. We report mean and standard deviation in seconds over three runs. We print the best
results per target in bold.

Instances SciPy Solver Our Solver GEN GCN GIN

Small setcover 0.006±0.004 0.071±0.015 0.033±0.001 0.029±0.001 0.017±0.001

Large setcover 0.390±0.098 3.696±2.141 0.033±0.001 0.030±0.001 0.021±0.001

Small indset 0.008±0.067 0.089±0.024 0.033±0.001 0.031±0.002 0.021±0.001

Large indset 0.226±0.087 1.053±0.281 0.033±0.002 0.030±0.001 0.021±0.001

Small cauc 0.012±0.005 0.151±0.035 0.033±0.001 0.028±0.001 0.021±0.001

Large cauc 0.282±0.065 3.148±0.880 0.033±0.001 0.029±0.001 0.021±0.001

Small fac 0.017±0.011 2.025±1.854 0.029±0.001 0.029±0.001 0.022±0.001

Large fac 0.732±0.324 6.229±2.672 0.030±0.001 0.031±0.001 0.022±0.001
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PDHG for Linear Programming

Consider the LP problemM = (G ; l , u, c ; h) in standard form

min c⊤x

s.t. Gx ≥ h

l ≤ x ≤ u

where G ∈ Rm×n, h ∈ Rm, c ∈ Rn, l ∈ (R ∪ {−∞})n, u ∈ (R ∪ {+∞})n

Saddle point problem form: min
l≤x≤u

max
y≥0

L(x , y ;M) = c⊤x − y⊤Gx + h⊤y

Primal-Dual Hybrid Gradient (PDHG)

− Initialize x0 ∈ Rn, y0 ∈ Rm

For k = 0, 1, 2, ...,K − 1⌊
xk+1 = Projl≤x≤u(x

k − τ(c − G⊤yk));

yk+1 = Projy≥0(y
k + σ(h − 2Gxk+1 + Gxk)).

37 / 60



Unrolling PDHG into PDHG-Net
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Figure: Overview of how each layer in PDHG-Net corresponds to each iteration of the traditional
PDHG algorithm, along with the overall architecture of PDHG-Net.
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Key Technique: Channel Expansion

▶ Expanding the n-dimensional vectors xk , yk into (n × dk)-dimensional matrices X k ,Y k

with dk columns (or called channels following the convention of neural network)

▶ The linear combination xk − τ(c − G⊤yk) of primal-dual is replaced by

X kUk
x − τk(c · 1⊤dk+1

− G⊤Y kUk
y )

where Θk
p = (τk ,U

k
x ,U

k
y ) ∈ R× Rdk×dk+1 × Rdk×dk+1 is the trainable parameter of the

k-th primal NN block

▶ Generalizability to LP instances of different sizes: Following the principle of
classical unrolling, a natural idea would be to unroll xk − τ(c − G⊤yk) to

xk − τ(c −W kyk)

where W k is trainable matrix. This is unsuitable for applying to LP problems with
different sizes
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PDHG-Net

Architecture of PDHG-Net

− Initialize X 0 = [x0, l , u, c], Y 0 = [y0, h]

For k = 0, 1, 2, ...,K − 1
X k+1 = ReLU

(
X kUk

x − τk(c · 1⊤dk+1
− G⊤Y kUk

y )
)
,

Y k+1 = ReLU
(
Y kV k

y

+ σk(h · 1⊤dk+1
− 2GX k+1W k

x + GX kV k
x )

)
,

− Output XK ∈ Rn, Y K ∈ Rm

The trainable parameter is Θ = {Θk
p,Θ

k
d}

K−1
k=0 , where

Θk
p = (τk ,U

k
x ,U

k
y ) ∈ R× Rdk×dk+1 × Rdk×dk+1

Θk
d = (σk ,V

k
x ,V

k
y ,W

k
x ) ∈ R× Rdk×dk+1 × Rdk×dk+1 × Rdk+1×dk+1
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Convergence Property of PDHG

Theorem

Let (xk , yk)k≥0 be the primal-dual variables generated by the PDHG algorithm for the LP

problemM = (G ; l , u, c ; h). If the step sizes τ, σ satisfy τσ∥G∥22 < 1, then for any
(x , y) ∈ Rn × Rm

≥0 satisfying l ≤ x ≤ u, the primal-dual gap satisfies

L(x̄k , y ;M)− L(x , ȳk ;M)

≤ 1

2k

(∥x − x0∥2

τ
+
∥y − y0∥2

σ
− (y − y0)⊤G (x − x0)

)
,

where x̄k = (
∑k

j=1 x
j)/k , ȳk = (

∑k
j=1 y

j)/k , and L is the Lagrangian defined by LP.
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Alignment Theorem: PDHG is a Specific PDHG-Net

Theorem

Given any pre-determined network depth K and the widths {dk}k≤K−1 with dk ≥ 10, there
exists a K -layer PDHG-Net with its parameter assignment ΘPDHG satisfying the following
property: given any LP problemM = (G ; l , u, c; h) and its corresponding primal-dual
sequence (xk , yk)k≤K generated by PDHG algorithm within K iterations, we have

1. For any hidden layer k, both x̄k and xk can be represented by a linear combination of
X k ’s channels, both ȳk and yk can be represented by a linear combination of Y k ’s
channels. Importantly, these linear combinations do not rely on the LP problemM.

2. PDHG-Net’s output embeddings XK ∈ Rn×1 and Y K ∈ Rm×1 are equal to the outputs
x̄K and ȳK of the PDHG algorithm, respectively.
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Estimate the Approximation Efficiency

Theorem

Given the approximation error bound ϵ, there exists a PDHG-Net with O(1/ϵ) number of
neurons and the parameter assignment ΘPDHG fulfilling the following property. For any LP
problemM = (G ; l , u, c ; h) and (x , y) ∈ Rn × Rm

≥0 satisfying l ≤ x ≤ u, it holds that

L(XK , y ;M)− L(x ,Y K ;M) < ϵ.

▶ The proof is rather concise to compare with Bipartite representation theorem

▶ Give an explicit estimation of the number of neurons required to represent a solution
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Numerical Result

▶ Training dataset: A set of instances denoted by I = {(M, z∗)}. The input of an
instance is an LP problemM = (G ; l , u, c; h); the label z∗ = (x∗, y∗) is the solution

▶ Loss Function: We train the PDHG-Net to minimize the ℓ2 square loss

min
Θ
LI(Θ) =

1

|I|
∑

(M,z∗)∈I

∥∥∥ZK (M; Θ)− z∗
∥∥∥2
2

▶ Metric: We calculate the improvement ratio over PDLP using the following equation:

Improv. =
PDLP− ours

PDLP
,

where this metric is applicable to both the solving time and the number of iterations
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Overview of the Datasets

# nodes # vars. # cons. # nnz.

103 1,000 1,001 7,982
104 10,000 10,001 79,982

5× 104 50,000 50,001 399,982
105 100,000 100,001 799,982
106 1,000,000 1,000,001 7,999,982

Table: Sizes of utilized PageRank instances.

dataset # vars. # cons. # nnz.

IP-S 31,350 15,525 5,291,250
IP-L 266,450 91,575 94,826,250
WA-S 80,800 98,830 3,488,784
WA-L 442,000 541,058 45,898,828

Table: Sizes of utilized instances.
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Two-stage Algorithm: PDHG-Net as Warm-start

1.0

3.1

…

0.5

2.0

min 𝑐⊤𝑥
s. t. 𝐺𝑥 ≤ ℎ

𝑙 ≤ 𝑥 ≤ 𝑢

LP instance LP solution

PDHG-Net PDLP

Initial

solution

Proposed Algorithm

Figure: The proposed post-processing procedure warm-starts the PDLP solver using the prediction of
PDHG-Net as initial solutions to ensure optimality.

Table: Solve time comparison between the proposed framework and vanilla PDLP on PageRank
instances. The improvement ratio of the solving time is also reported.

# nodes ours PDLP Improv.

103 0.01sec. 0.04sec. ↑ 45.7%
104 0.4 sec. 1.1sec. ↑ 67.6%
105 22.4sec. 71.3sec. ↑ 68.6%
106 4,508sec. 16,502sec. ↑ 72.7%
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Efficiency and the Number of Restarts

Table: Comparison of the proposed framework against default PDLP in solving IP and WA instances.

dataset.
time (sec.) # iters.

ours PDLP Improv. ours PDLP Improv.

IP-S 9.2 11.4 ↑ 19.5% 422 525 ↑ 19.5%
IP-L 7,866.3 10,045.6 ↑ 21.7% 6,048 8,380 ↑ 27.8%

WA-S 114.7 137.8 ↑ 16.7% 8,262 9,946 ↑ 16.9%
WA-L 4817.6 6426.2 ↑ 25.0% 14,259 17,280 ↑ 17.5%

Table: The average number of restarts in the PDLP solving process with our framework (ours) and
default settings (represented by PDLP).

# of Nodes 5× 103 1× 104 2× 104 4× 104

# restarts Ours 2.2 4.15 2.0 2.0

PDLP 5.9 11.7 20.25 11.3
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Prediction Accuracy v.s. Epochs
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Figure: The distance between the predicted solution of PDHG-Net and optimal solution in PageRank
training and validation instances with (a) 5× 103, (b) 1× 104, (c) 2× 104, (d) 4× 104 variable sizes.
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Improvement v.s. Prediction Accuracy
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Figure: We present the improvement ratio in both solving time and the number of iterations for
solutions extrapolated at varying distances from the optimal solution. Each blue dot symbolizes an
extrapolated solution, while the yellow line represents the trend line fitted through these points.
Results demonstrate a strong correlation.
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Generalizability to Larger Sizes

Table: Solving time and number of iterations for PageRank, IP and WA instances larger than training
set sizes. For clarity, we denote the size of the largest instance of IP and WA datasets as Large.

metric Dataset size ours PDLP Improv.

time (sec.)
PageRank

5× 104 5.5 11.2 ↑ 50.9%
1× 105 17.0 32.5 ↑ 47.8%

IP Large 6796.7 8631.4 ↑ 21.3%
WA Large 5599.1 5859.4 ↑ 4.4%

# iter.
PageRank

5× 104 1,605 3,397 ↑ 52.7%
1× 105 1,958 3,914 ↑ 50.0%

IP Large 7,291 8,970 ↑ 18.7%
WA Large 16,166 17,280 ↑ 6.4%
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Portion of GPU Time & Comparison with GNNs

Table: Comparison of total solving time and GPU time for initial solutions, including the ratio of GPU
time to total solving time.

# nodes. 103 104 105 106

GPU time (sec.) 0.01 0.02 0.21 1.12

CPU time (sec.) 0.02 0.4 22.4 4,508.3
Ratio 52.6% 5.7% 0.9% 0.02%

Table: Comparison of improvement ratio and ℓ2 distance between the proposed framework
implemented with PDHG-Net and GNN.

# nodes. Improv. ℓ2 distance
ours GNN ours GNN

103 ↑ 45.7% ↑ 1.4% 0.05 0.51
104 ↑ 67.6% ↑ 19.3% 0.2 1.38
105 ↑ 71.3% ↓ 4.0% 0.95 30.35
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Dual Interior-Point Optimization Learning for Linear Programming

▶ Consider parametric optimization problems of the form

(Pβ) min
x

c⊤β x

s.t. Aβx = bβ

lβ ≤ x ≤ uβ

▶ Dual Optimization Proxy: a model that returns a dual-feasible solution to Pβ

▶ The dual of the problem is given by

(Dβ) max
y

b⊤y + l⊤zl − u⊤zu

s.t. A⊤y + z l − zu = c

z l , zu ≥ 0

where y ∈ Rm and z l , zu ∈ Rn
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The Lagrangian Functions for Primal and Dual Problems

▶ The Lagrangian function for Pβ is

Ls(y) = min
l≤x≤u

c⊤x+ y⊤(b− A⊤x)

▶ Set φµ(x) = −µ
∑

j ln(xj − lj) + ln(uj − xl). The Lagrangian function for Dβ is

Lµ(y) = min
l≤x≤u

c⊤x+ y⊤(b− A⊤x) + φµ(z)
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Dual Interior Point Learning (DIPL) & Dual Supergradient Learning (DSL)

The training of the proxy modelMθ for DSL and DIPL can be formalized as

max
θ

Eβ [L (Mθ (Aβ,bβ, cβ, lβ,uβ))]

where the expectation is taken over a distribution of problem data parameterized by β. The
loss function L is set to Ls for DSL and Lµ for DIPL.

Algorithm DSL and DIPL Training

Input: Dataset {Ai , bi , ci , li , ui}Ni=1, learning rate α, epoch count E , loss function L
Output: Dual proxy modelMθ

1: Initialize θ randomly e = 1, . . . ,E each i
2: yi ←Mθ(Ai , bi , ci , li , ui )
3: ℓ← 1

N

∑
i L(yi )

4: θ ← θ + α∇θℓ
5: returnMθ
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Experimental Results

▶ The implementation of DSL is denoted by S and the implementation of DIPL by Iµ

▶ Mθ: A 3-layer fully-connected neural network with ReLU activations

▶ 10,000 feasible samples are used for training and 2,500 are used for validation. The
testing set is always the same set of 5,000 feasible samples

Table: DCOPF Benchmark Summary. For each benchmark, we report the number of constraints m,
the number of variables n, the hidden layer size h, and the total number of parameters |θ| in the
neural networkMθ

Benchmark m n h |θ|

1354 pegase 1992 2251 2048 16.6M
2869 pegase 4583 5092 4096 71.1M
6470 rte 9006 9766 8192 281M
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Experimental Results

The parametric DCOPF problem is of the form

OPF(pd) min
pg,pf

c⊤pg

s.t. e⊤pg = e⊤pd

pf = PTDF(pg − pd)

pg ≤ pg ≤ pg

pf ≤ pf ≤ pf

The DCOPF instances are first converted to the normal form (only b varies)

min
x

c⊤x

s.t. Ax = bβ

l ≤ x ≤ u

57 / 60



Dual Gap Ratio v.s. Epochs

The dual gap ratio is reported as a percentage:

Dual Gap Ratio =
L(y∗)− L(ẏ)
L(y∗)

× 100%
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Figure: Convergence of the mean dual gap ratio on testing set samples during training.
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Distribution of the Dual Gap Ratio
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Figure: Distribution of dual gap ratios over testing set samples for different benchmarks.
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Many Thanks For Your Attention!

60 / 60


	GNNs Can Separate LPs
	PINNs for Linear Programming: A Proof of Concept
	IPM-MPNN: Training a GNN by Imitating Interior-point Method
	PDHG-Net: PDHG-Unrolled L2O Method for Large-Scale Linear Programming
	Dual Interior-Point Optimization Learning for Linear Programming

