
Exploring Learning to Optimize: End-to-End
Approaches for Constrained Optimization and Beyond

Zhonglin Xie

Beijing International Center for Mathematical Research
Peking University

July 18, 2024

1 / 18

Warmup: LISTA

▶ Least absolute shrinkage and selection operator (LASSO):

min
x

1

2
∥b − Dx∥22 + λ∥x∥1, where b = Dx∗ + ε

▶ Iterative Shrinkage Thresholding Algorithm (ISTA):

xk+1 = ηθ(W1b +W2x
k), k = 0, 1, 2, . . .

where W1 =
1
LD

⊤, W2 = I − 1
LD

⊤D, θ = 1
Lλ

▶ Learned ISTA (LISTA) with weights Θ = {W k
1 ,W

k
2 , θ

k}Kk=1:

xk+1 = ηθk (W
k
1 b +W k

2 x
k), k = 0, 1, · · · ,K − 1

Figure: ISTA Figure: Unrolled Learned ISTA Network
2 / 18

A Typical Paradigm of Learning to Optimize (L2O)

▶ F : a collection of optimization problems sharing a similar structure

▶ Learning to Optimize: given x0 and N

min
{θi}

Ef ∈F

[
ℓf

(
{x fi }Ni=0

)]
s.t. x fi+1 = x fi −Ψi ({x fj ,∇f (x fj)}ij=0, θi), 0 ≤ i ≤ N − 1

▶ ℓf emphasizes the dependence on f . The symbols Ψi represent
neural networks, while θi refers to their corresponding weights

Selected
Optimizer

Online

Classical
Optimizers

New Optimizees

(a) Classic Optimizer

Learned
Optimizer

New Optmizees

Online

Learnable
Optimizer

 Update

Training
Optmizees

Training Dynamics

Update

Offline

(b) Learning to Optimize

3 / 18

The Bitter Lesson of Model-based L2O

The biggest lesson that can be read from 70 years of AI research
is that general methods that leverage computation are ultimately
the most effective, and by a large margin.
—— The Bitter Lesson, March 13, 2019, Rich Sutton.

▶ Model-based L2O does not utilize the power of computation

▶ It needs a problem-specific customization, not general enough

▶ Can we learn a direct mapping from data to solutions

4 / 18

Deep Constraint Completion and Correction (DC3)

▶ Given the problem data x

min
y∈Rn

fx(y) s.t. gx(y) ≤ 0, hx(y) = 0

where f , g , and h are potentially nonlinear and non-convex

▶ Training a neural network Nθ to approximate y given x

▶ A naive soft loss:

ℓsoft(ŷ) = fx(ŷ) + λg ∥ReLU (gx(ŷ))∥22 + λh ∥hx(ŷ)∥22 , ŷ = Nθ(x)

▶ Supervised learning framework on example (x , y):

ℓ(ŷ) = ∥ŷ − y∥22, ŷ = Nθ(x)

▶ Both can lead in practice to highly infeasible outputs

5 / 18

DC3 equality completion

▶ Enforcing equality constraints by variable elimination

▶ First output a subset of the variables, z , then infer the remaining,
φx(z), according to hx([z , φx(z)]) = 0

▶ Backpropagation:

0 =
d

dz
hx

([
z

φx(z)

])
=

∂hx
∂z

+
∂hx

∂φx(z)

∂φx(z)

∂z
= Jhz + Jhφ

∂φx(z)

∂z

⇒ ∂φx(z)/∂z = −
(
Jhφ

)−1
Jhz

▶ Backpropagate losses through the network:

dℓ

dz
=

∂ℓ

∂z
+

∂ℓ

∂φx(z)

∂φx(z)

∂z︸ ︷︷ ︸
left matrix-vector product

=
∂ℓ

∂z
− ∂ℓ

∂φx(z)

(
Jhφ

)−1
Jhz

6 / 18

Inequality correction (Highly questionable)

▶ Decreasing the inequality violation by taking a gradient step

▶ Denote the gradient of inequality violation w.r.t. [z , φx(z)] as

∆z = ∇z

∥∥∥∥ReLU(
gx

([
z

φx(z)

]))∥∥∥∥2
2

, ∆φx(z) =
∂φx(z)

∂z
∆z

▶ For a step size γ > 0, we define:

ρx

([
z

φx(z)

])
=

[
z − γ∆z

φx(z)− γ∆φx(z)

]
, ρ

(t)
x = ρx ◦ · · · ◦ ρx︸ ︷︷ ︸

t times

7 / 18

Algorithm: Deep Constraint Completion and Correction

Algorithm Deep Constraint Completion and Correction (DC3)

Require: Assume equality completion procedure φx : Rm → Rn−m

1: procedure Train(X)
2: init neural network Nθ : Rd → Rm

3: while not converged do
4: for x ∈ X do
5: compute partial set of variables z = Nθ(x)

6: complete to full set of variables ỹ =
[
z⊤ φx(z)

⊤]⊤ ∈ Rn

7: correct to feasible (or approx. feasible) solution ŷ = ρ
(ttrain)
x (ỹ)

8: compute constraint-regularized loss ℓsoft(ŷ)
9: update θ using ∇θℓsoft(ŷ)

10: end for
11: end while
12: end procedure
13: procedure Test(x ,Nθ)
14: compute partial set of variables z = Nθ(x)

15: complete to full set of variables ỹ =
[
z⊤ φx(z)

⊤]⊤
16: correct to feasible solution ŷ = ρ

(ttest)
x (ỹ)

17: return ŷ
18: end procedure

8 / 18

Comments on DC3

▶ Intuitive and effective for enforcing feasibility

▶ Assuming [z , φx(z)] already be close to feasible before correction

▶ The correction process is proved to converge for linear constraints

▶ The obtained feasible solution may be sub-optimal

▶ Backpropagating through ρ
(ttrain)
x (ỹ) needs more justification

9 / 18

Lagrangian Duality for Constrained Deep Learning

▶ Consider the parametric constrained optimization

O(d) = argmin
y

f (y , d) subject to gi (y , d) ⩽ 0 (∀i ∈ [m])

▶ Given a set of samples D = {(dl , yl = O (dl))}nl=1, we solve

θ∗ = argmin
θ

n∑
l=1

L (Nθ (dl) , yl)

subject to gi (Nθ (dl) , dl) ⩽ 0 (∀i ∈ [m], l ∈ [n])

where L is a loss function, Nθ∗ is the learned optimizer

10 / 18

Lagrangian Dual Framework for Constrained Optimization

▶ Given multipliers λ = (λ1, . . . , λm), Lagrangian loss writes

Lλ (Nθ (dl) , yl , dl) = L (Nθ (dl) , yl) +
m∑
i=1

λigi (Nθ (dl) , dl)

▶ Nθ∗(λ) is an approximation of the oracle O with

θ∗(λ) = argmin
θ

n∑
l=1

Lλ (Nθ (dl) , yl , dl)

▶ The Lagrangian dual computes the optimal multipliers

λ∗ = argmax
λ

min
θ

n∑
l=1

Lλ (Nθ (dl) , yl , dl)

▶ The strongest Lagrangian relaxation of O is Nθ∗(λ∗)

11 / 18

Algorithm

Algorithm LDF for Constrained Optimization Problems

Require: D = (dl , yl)
n
l=1 : Training data

1: α, s = (s0, s1, . . .) : Optimizer and Lagrangian step sizes
2: λ0

i ← 0 ∀i ∈ [m]
3: for epoch k = 0, 1, . . . do
4: for all (yl , dl) ∈ D do
5: ŷl ← Nθ(λk)(dl)
6: θ ← θ − α∇θLλk (ŷl , yl , dl)
7: end for
8: λk+1

i ← λk
i + sk

∑n
l=1 gi (ŷl , dl) ∀i ∈ [m]

9: end for

12 / 18

Self-Supervised Primal-Dual Learning

▶ Lagrangian dual framework has no guarantee for feasibility!

▶ Consider the Augmented Lagrangian loss

Lλ (ŷ , dl) = f (ŷ , dl) +
m∑
i=1

λigi (ŷ , dl) + ρ

m∑
i=1

ν(gi (ŷ , dl))

where ŷ = Nθ (dl) and ν(·) = max{·, 0}2 measures the violation

▶ Dual learning uses the dual network Mϕ to obtain λ∗

13 / 18

Algorithm

Algorithm Self-Supervised Primal-Dual Learning

Require: D = (dl , yl)
n
l=1 : Training data

1: α, β, ρmax : Primal and dual step sizes, upper bound of ρ
2: λ0

i ← 0 ∀i ∈ [m]
3: for epoch k = 0, 1, . . . do
4: for all (yl , dl) ∈ D do
5: ŷl ← Nθk (dl)
6: θ ← θ − α∇θLλk (ŷl , dl)
7: end for
8: for all (yl , dl) ∈ D do
9: Freeze λk ← Mϕk (dl), ŷl ← Nθk (dl)

10: ϕ← ϕ− β∇ϕ∥Mϕ(dl)−max{λk + ρg(ŷl), 0}∥
11: end for
12: ρ← min {αρ, ρmax}
13: end for

14 / 18

Transformer-based L2O

▶ JAX learned optimization package

▶ Inspired from BFGS, it constructs a rank one update each step

∆xk = Bksk , B̃k+1 = Bk+
L∑

l=1

ukl

(
ukl

)⊤
, Bk+1 = B̃k+1/

∥∥∥B̃k+1
∥∥∥

Linear

FC
(ReLU)

FC
(ReLU) Linear

Encoder Encoder

Linear

{x, dL
dx

, …} z N × 128

Bk−1

Encoder

Linear Linear

Bk

N × 128 N × 128 N × 128

N × 1 N × 1 N × 1

128 128 N × 2 {αk, dk}

B [λa exp(λbα) ⊙ d] Δx
Adafactor
Features

Layer Norm Multi-Head (3)
Attention Layer Norm FC

(128, GeLU)

Transformer Encoder

FC
(256, GeLU)

Block
N ×

:=
Apply Block

independently
to each row of

the input

N ×
N ×

N × N × N ×

15 / 18

VeLO: Training Versatile Learned Optimizers by Scaling Up

▶ JAX learned optimization package

▶ Trained with four thousand TPU-months of compute

▶ Requires no hyperparameter tuning, automatically adapting

0.0 0.2 0.4 0.6 0.8 1.0
Task percentile

2 1

20

21

22

23

24

Sp
ee

du
p

ov
er

 L
R-

tu
ne

d
Ad

am Hyperparameter free :
VeLO (1 trial)
LOpt (RNN MLP) (1 trial)
LOpt (STAR) (1 trial)

Hyperparameter tuned :
OptList (10 trials)
Shampoo (14 trials)
NAdamW (1k trials)
AdamLR* (14 trials)

Figure: Optimizer performance on the 83 canonical tasks in the VeLOdrome

16 / 18

Symbolic Discovery of Optimization Algorithms

▶ Google automl repository

▶ A total cost of 3K TPU V2 days

▶ Discover the Lion (EvoLved Sign Momentum) algorithm

17 / 18

Many Thanks For Your Attention!

18 / 18

