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What is L207

m Classic optimizers are manually designed, they usually have few or
no tuning parameters

m Learned optimizers are trained in an L20 framework over a set of
similar optimizees (called a task distribution) and designed to
solve unseen optimizees from the same distribution

Selected Undat
oo pcate
Optimizer Update @
o Leamab]e
cl al I \ 4
Optimizers
New Optimizees H

Trdmmg Dynamics
Offline
\_Online  J Figure 2: Learned Optimizer by
L20

Training
Optmizees

New Oplmwees

Online
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Why L207?

m An optimizer learned by L20 is much faster than classic methods

m The learned optimizer may also return a higher-quality solution to
a difficult task than classic methods
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Why Theory?

m We need an interpretable and reliable model with guaranteed
worst performance

m Theory leads to an eifficient model with smaller size and less
computational complexity (both in training and in testing)

m Heuristic method is cheap
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Sparse Coding

m A classical problem in source coding, signal reconstruction,
pattern recognition and feature selection

m There is an unknown sparse vector z* = [2},--- ,2%,]" € RM. We

have its noisy linear measurements:

M
b:demfn—i—e:Dx*—i—e

m=1
where b € RV, D = [dy,--- ,dy] € RV*M is the dictionary, and
e € RV is additive Gaussian white noise
m Normalized dictionary: ||dmlly = |D.mlly =1,m=1,2,--- , M
m Under-determined system: N < M
m Reconstruct z* using a sparse linear combination of d,,

m Expensive inference algorithm prohibits real-time applications
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Problem Formulation

1
min iHb — Dz||3 + A||z||1, where b= Da* +¢
T

m A popular approach for sparse coding
m 2* can be recovered faithfully when it is sufficiently sparse
m Iterative Shrinkage Thresholding Algorithm (ISTA):

1
2t =y (2 + ZDT(b —Dz%), k=0,1,2,...

where ng(z) = sign(x) max(0, |z| — 6) and L is usually taken as the
largest eigenvalue of DT D, X is a hyper parameter
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LISTA

m Let Wp = %DT, Wo=1-— %DTD,G = %)\. ISTA can be written as
2T = (Wb + Waa)

m ISTA can be recognized as a Recurrent Neural Network (RNN)
m Unrolling the RNN and truncating it into K iterations:

P = g (WEb + Wha®), k=0,1,--- | K — 1,

leads to a K-layer feed-forward neural network named Learned
ISTA (LISTA) with trainable weights © = {WF, Wk, 0F} K .

]
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Figure 3: RNN
Structure of ISTA

Figure 4: Unrolled Learned ISTA Network
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LISTA with Coupling Weights (LISTA-CP)

We only parameterize the first D inside 7, then get the LISTA with

CouPling weights:
2 = i (¥ + (W) T (b — D)),

where the trainable weights are reduced to © = {W*, gk} K .

Generalized Mutual Coherence:

a(D) = inf max WTD
WeRN*M i#j
WD, =1 \1<ij<m

m LP: minimizing a piece-wise linear function with linear constraints
m Feasible, and

e v
1<Z§']§M
[ is bounded exists optimal solution
m Define W(D {W € RVXM . W/ attains the mﬁmum}
Zhonglin Xie (Peking University)
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Analytic LISTA: Less Parameters To Learn

m Tied LISTA (TiLISTA):
= Mok (xk — 'kaVT (Dmk — b)) ,

where © = W U {+*,0¥}K | are trainable weights
m Following above theorem, we compute W by solving

W € argmin
WGRNXJ\/I

m We set W* = ~*IW, and propose Analytic LISTA (ALISTA):
2 = g (aF — AW T (D2 - 1)),

)

2
WTDHF, st. (Wim)" Do = 1,¥m

where © = {7*, 0¥} | are parameters to train

Table 1: Summary: variants of LISTA and the number of parameters to learn.

LISTA LISTA-CP TiLISTA | ALISTA
O(KM?+ K+ MN) | OKNM+K) | ONM+K) | O(K)
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Robust ALISTA to Model Perturbation (Meta-Net)

m Many applications, such as often found in surveillance video
scenarios (Zhao et al., 2011; Han et al., 2013), can be formulated
as sparse coding models whose dictionaries are subject to small
dynamic perturbations (e.g, slowly varied over time)

D :D =D + ¢p, where €p is some small stochastic perturbation

= Sample a perturbed dictionary D. Sample x and € to generate b
w.r.t. D. Apply Stage 1 of ALISTA w.r.t. D and obtain W

= Instead of an iterative algorithm, we use a neural network that
unfolds that algorithm (Meta-Net) to produce W. Apply Stage 2
of ALISTA w.r.t. W,D,x, and b to obtain {y* 6%}

m D becomes the data for training the Meta-Net that generates W

m This neural network is faster to apply than the iterative method
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Training Process

m For each model, 2 depends on 0, b, 2°. Denote 2% as 2% (0, b, 20)

m Given the distribution of b, z*, the optimization problem is

Hl@inE(b’x*)HxK(e)y b; :EO) - :1"*||%

Stochastic gradient descent (SGD) can be applied to solve this
minimization problem. The gradient w.r.t. 2 on © are obtained
with the chain rule
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Trick: Layer-wise Training

m Denote ©7 = {(Wf, W¥,0%)}7_, all the weights in the 7 -th and
all the previous layers

m Learning multiplier ¢(-) initialized as 1 to each weight

m Initial learning rate ag and two decayed learning rates oy, as. In
real training, we have a1 = 0.2aq, ag = 0.02aq

m Train (W], W7, 07) the initial learning rate aq

m Train ©7 = O U (W], W7, 07) with the learning rates oy and s

m Multiply a decaying rate 7 (set to 0.3 in experiments) to each
weight in ©7

Zhonglin Xie (Peking University) ADMM-Net July 31, 2021 13 /54



Code for Layer-wise Training

1 loss_ = tf.nn.12_loss (xhs_ [t+1] - x_)

2

3var_list = tuple([var for var in model.vars_in_layer[t] if
var not in traimn_vars])

5 op_ = tf.train.AdamOptimizer (init_lr) .minimize (loss_,
var_list=var_list)

7 for var in var_list:
8§ train_vars.append (var)

10 # Train all variables in current and former layers with
decayed

11 for 1lr in 1rs:

12 op_ = tf.train.AdamOptimizer (lr_multiplier*lr).minimize (
loss_,var_list=train_vars)

13 # decay learning rates for trained variables

14 for var in train_vars:

15 lr_multiplier [var.op.name] *= decay_rate
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Neccessary Condition for Convergence

m Assumption: b= Dz*, 2% = 0 and
r* € X(B,s) 2 {z* | |zf| < B,Vi, ||z*||o < s}

» z* depends on {W7,WJ ,HT}T O,b 20. Using b = Dz*, 20 = 0, zF
can be represented as

({WI’WQ,HT T= Oa *)

Theorem (Neccessarv Condition for Convergence of LISTA)

If 2* ({W1 W3 ,OTLE . 0, x*) — x* uniformly for z* € X(B,s) as k — oo,
and |W¥||2 < Bw,Vk, where By is a positive constant, we have

0 — 0, W — (I - WfD) =0, as k — oo
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Proof of 8% — 0

m Since z* — z* uniformly, there exists K1, Vk > K7, |me7C —zf| < %

m Denote
X(B,B,s) 2 {a" | B <|a}| < B,Yi € supp(z*), 270 < 5}
m Above inequality holds for any z* € X(B/10, B, s), we have

sign(z") = sign(z*), Vk > K,
m Let S = supp(z*), consider the support set elements

2 =nge (W3 (S, S)as + W (S, :)b)
=WE(S, S)xk + WE(S, )b — 6F sign(z¥)
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Proof of 8% — 0

m Ve > 0, there exists Ko, such that Vk > Ko, ||z% — 2*[|s < e
m Suppose k > max{K1, Ky}, and ¥ = 2* + &, 2% = 2* 4 &, then
k+1 = W (S, 8)zk + WF(S,:)b— 6% sign(xk)
a4+ & = WH(S,9)(xh + &) + WS, )b — 0F sign(z¥)

Denote & = WX (S, S)¢1 — &, we have ||€]|2 < (1 + Bw)e and

(I = W5 (S,5) = WID(S, 8))z§ = 6* sign(zy) — €

Take z* € X(B/10, B/2,s), above formula holds for 2z*

(I —WX(S,8) —WFD(S, S))2z% = 6% sign(x}) — &
m Subtracting the above two formulas yields
3(1 4+ Bw)

V18]
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Proof of Wi — (I — WD) — 0
m By optimality condition
ahth e WH (S, )a® + WID(S, )zl — 0%001 (a%T),

where 0/;(z) is the sub-gradient of ||z||;

m ¥ converging uniformly implies, for any ¢ > 0,z2* € X (B, s), there

exists K3, such that Vk > K3, ||z% — 2*||]2 < ¢
m Suppose zF = * + &, 2! = 2* + &, above formula equals to
(1-WE(S,9) = WED(S, 8) )y € WH(S, )6 — (€4)s — 00t ()
m By [|941(a5) ]2 < V/19]

H (1 —WE(S, S) — WED(S, 5))35;

| < Whlloe + +65/IST = 0

m By the arbitrariness of the 2* € X(B,s) = W& — (I — WFD) — 0
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Recovery Error Upper Bound

Theorem (Recovery Error Upper Bound of LISTA-CP)

Take any x* € X(B,s), any W € W(D), any v* € (0, ﬁ) Using
them, define the parameters {WF*, 6k}

WE =+ "W, 0" =+*u(D) sup {|la"(z") —2*[li}
z*€X(B,s)

while the sequence {z*(x*)}22 | is generated by LISTA-CP using the

above parameters and x° = 0 (Note that each z* (x*) depends only on
OF=1 0%=2 ... and defines 6% ). Let s < (14 1/f1)/2. We have

supp(at(a*)) € S, [lah(a*) —a*lls < sBexp(— 3. ¢7), k=1,2,...
7=0

where S = supp(z*) and * = —log((2fis — @)v* + |1 —~+*|) > 0

4
Zhonglin Xie

(Peking University)
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Parameters Selection with No False Positives
m We have the neccessary condition:

l=zgllz .,z

k *
r — T =
(e PP

m Does there exist 6%, 7", such that for any k,supp(z¥) C S?
® Yes. Assuming supp(z¥) C S, for any i ¢ S, we have

k—l—l_nk kZWT ))
JES

m Note that ng(z) = sign(z) max(|z| — 6,0). When

6" = 7" (D) sup  {[lz*(2") =21} 2 4* Y WDt
z*eX(B,s) jes

we have :1: =0.
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Proof of Recovery Error Upper Bound

m Take arbitrary z* € X(B, s). For all ¢ € S, by optimality
condition, we obtain

2i T € af — WD, s (2% — ) — 0F0l ()
where 0/¢;(z) is the sub-gradient of |z],z € R :

[ {sign(z)} ifxz#0
0h() _{ Hg, 1] if 2 =0

m The choice of W € W(D) gives W:;DZJ = 1. Thus,

i~ kW.T-DA sk — %)
:ﬂff - ’Yk Z WID ,](‘T? - 1"]) - ’yk(l‘z - xz)
JES,jFi
=i —9" Y WD} — o)) + (1= ") (f - )
JES,j#i
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Proof of Recovery Error Upper Bound

m Forallie S
it eaf—F Y WD j(af—2))+(1-F) (@f —2]) - 0500y ()
JES,jFi
m Thus
it —af < Y0 WD gllaf — ]+ 0% + 1= Mfaf — ]
JESjF#i
<yt Yy =gl 408 4 L= A — 2]
JESJFi
= Note that [|z% — 2*||; = ||2% — 2%]|1, summing i € S yields
12"+ — 2™l <(IS] = Dy lla® — 2™ |1 + |S16" + |1 = 4*|lla* — 2*|s
=((18] = Dy + 1 = 7" lla" — a1 +[5]6*
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Proof of Recovery Error Upper Bound

m The assumption s < (14 1/f1)/2 gives 2fis — i < 1. If 0 < 4% < 1,
we have ¢® > 0. If 1 < ¥ < 2/(1 4 2fis — i), we have
(2fs — a)Y" + ’1 —vk‘ = (2fis — BV ++F -1 <1,

which implies ¢* = —log((2fis — )v* + |1 — %) > 0
m Taking supremum of the last inequality over z* € X (B, s), by
S| < s and 0% = yFisup,. [|[2F — 2% |1,

sup [|27* — 2|l < (205 — @)7" + |1 = ~* ) sup [|2* — 2*[x
T* T*
k
< exp(— 3 ¢ )sup a® — oy
7=0 z*
k
< sB exp(—ZcT)
7=0

Zhonglin Xie (Peking University) ADMM-Net July 31, 2021 23 /54



Numerical Results

m Settings: N = 250, M = 500 and D; ; ~ N(0, %) with ||D. ;|2 = 1

m Set the number of truncated layers K = 16. Training process:

m O is learnable parameters and is different in different models
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Validation of Neccessary Condition for Convergence
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Validation of Theorem
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CS-MRI

m Magnetic Resonance Imaging (MRI) is a non-invasive imaging
technique for clinical diagnosis

m Compressive sensing MRI (CS-MRI) methods first sample data,
then reconstruct image using compressive sensing theory

m Challenging to choose an optimal image transform domain and the
corresponding sparse regularization

m Alternating Direction Method of Multipliers (ADMM) is efficient
but it is not trivial to determine the optimal parameters
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General CS-MRI Model

m Assume z € CV is an MRI image to be reconstructed
m y € CV'(N' < N) is the under-sampled k-space data

m The reconstructed image can be estimated by solving:

L

. .1

i = argmin{ | Az — yl + 3 Ng(D)},
z =1

where A = PF € RV"Y ig a measurement matrix, P € RV >V is a
under-sampling matrix, and F' is a Fourier transform. D; denotes
a transform matrix for a filtering operation. g(-) is a regularization
function. )\; is a regularization parameter
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ADMM Algorithm

m Introduce auxiliary variables z = {z1,29, -+ , 21 }:

L
1
min §|]Aa: —yll3 + Z Ng(z1) st z=Dix, 1=1,2,---,L
’ 1=1

m Augmented Lagrangian function:

L

L
1
Ly(z,2,a) = || Az — y|5 + E Ng(z) — E (o, 2 — Dyx)
2 =1 =1

L
pL
+)° o lla = Dyz|f3
=1

where o = {oy} are Lagrangian multipliers and p = {p;} are
penalty parameters
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ADMM Algorithm

m Alternatively optimizes {z, z,«} and substitute A = PF, §; = %:

L

2" =F 'GPy + > pFD/ (/" =)
=1

2" = S(Dyx™ + Bl”_l; )

B =B+ m(Dya” — )

where G = PTP + Y1, pFD/ D;FT, S(-) is a nonlinear
shrinkage function, 7; is an update rate

m z" can be efficiently computed by Fast Fourier Transform
m Needs to run dozens of iterations to get a satisfactory result

m Challenging to choose the transform D; and shrinkage function
S(-) for general regularization function g(-)

m Not trivial to tune the parameters p; and 7; for different data
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Data Flow Graph for the ADMM Algorithm

___________________

Sampling data ! i Reconstructed
in k-space MR image

Figure 11: The data flow graph for the ADMM. This graph consists of four
types of nodes: reconstruction (X), convolution (C), non-linear transform
(Z), and multiplier update (M).
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ADMM-Net

m ADMM-Net is defined over the data flow graph
m Reconstruction layer X": Substituting D;, py with H}*, p', we get

L
2" = FT(PTP+ > pf F(H!) THPFT) 7 [PTy
=1
L

+ Y AF(H) (o = )]

=1
where H}" is the I-th learnable filter, pj' is the [-th learnable
penalty parameter, and y is the input under-sampled data
m Convolution layer C™:
¢ = D'z"

where Dj' is a learnable filter matrix in stage n. Different from the
original ADMM, we do not constrain the filters D' and H}* to be
the same to increase the network capacity
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ADMM-Net

m Nonlinear transform layer Z™ : Use piecewise linear function to
replace the shrinkage function S(-). Given ¢} and 5{‘_1:

2 = Sprr(c + BZn_IQ {pi erfi}fv:ﬂ)a

where Sprr(-) is determined by a set of control points {p;, ql”i}ficl

a+q'y — i1, a < pi,
Sprr(a; {pi qii}ie) =4 @7 qlrfl(\fc - ﬁj\if’ . @ > PN.
AP\ k1 Uk
qln,k + DPk+1—DPk » PLSAaSPN.

where k = L%J, {pi}

located within [—1,1], and {q?l}ficl are the values at these
positions for I-th filter in n-th stage

Ne are predefined positions uniformly
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ADMM-Net

X

. . . . . . N,
Figure 12: Illustration of a piecewise linear function Sprr(;{pi,q’;}i1)-

m Multiplier update layer M™:
Bl =B (e = 2

where 7" are learnable parameters.

m Network Parameters: H]" and pj' in reconstruction layer, filters D}
in convolution layer, {qf’l}f\[:cl in nonlinear transform layer, n* in
multiplier update layer, where [ =1,2,--- | Land n=1,2,---, N
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Network Training

Given the training data I', the loss function is:

*
O, %, T

where Z(y, ©) is the network output based on network parameter O and
under-sampled data y, ©; = {(qlz)l D HPY pftyn }n L0 ={6,},

We learn the parameters by minimizing the loss w.r.t. © using L-BFGS
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Multiplier Update Layer

(a) Multlpller update Iayer

m Three sets of inputs:{3/" '}, {c'} and {2]'}
m Its output {3} is the input to compute {3/}, {27!} and 2"+
m The parameters of this layer are n*,l =1,--- ,L

m The gradients of loss w.r.t. the parameters can be computed as:

OB _ 0B 057 4 oE _ _op 08 | op 0" | op ppni
o = OB O 957 = g sy ¥t omy T @t opy
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Nonlinear Transform Layer

===

_c_» Z(n) _ZI_>@

Li(ib) Non-linear transform layer

Two sets of inputs:{ 3" '}, {c]'}
Its output {z'} is the input for computing {8} and z"*!

m The parameters of this layers are {ql"i}ficl,l =1,---,L

The gradient of loss w.r.t. parameters can be computed as

OE  OF 0z ore OE _ OE OB N OF Opntl
Oqi'; 0= Oqj’; 021~ OBp 028 | 9an L 0a]
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Convolution Layer

x(n) c(")
======2|C® 4_%:

(c) Convolution layer

m The parameters of this layer are D}'(I =1,---,L). We represent
the filter by D' = an:l W[ B, where B,, is a basis element,
and {w}’,,} is the set of filter coefficients to be learned

m The gradients of loss w.r.t. filter coefficients are computed as:

OE  OE O L OE _ 0B OB OE 9z
owp,, O oup,’ ot 9B dct T 9zl Ot

wher

n

m The gradient of layer output w.r.t. input is computed as g%
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Reconstruction Layer

) 0 i
Z X i
———=2X® 4___; 5

(d) Reconstruction layer

m The parameters of this layer are H*,p(l=1,--- ,L)
= Represent the filter by H* = >0 147", B, {1}, } is learnable

OE _ O0F 0xz™ O0FE __ OE 0z™
m The gradients w.r.t. parameters: DT, = Dan O DpF = wn OpF
OF Oc"™
86” oxn’ n< N
where — = " — 9%)
Oz ( if n= N5+ 1

m VI =13
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Result
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Figure 13: (a) Scatter plot of NMSEs and average test time for different
methods; (b) The NMSEs of ADMM-Net using different number of stages
(20% sampling ratio for brain data).
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Background

m Wide area network (WAN): to transmit data over long distances

m There are K flows and the size of k-th flow is si; total available
number of paths for flow k is Pg; link capacity ¢;,{ =1,2,---, L.
E.g. 4-ary Fat Tree topology

Core

SBIHB HHLE JBES HOHP

m Maximize one kind of utility functions among all flows, i.e.
Zszl U (||k||1), where x, is the rate allocation and path
selection vector of flow k

Zhonglin Xie (Peking University) ADMM-Net July 31, 2021 41 / 54



Example

max log(x11 + x1,2) +log(z21 + 22,2),
s.t. x21 +£E172 S 1,

m K flows with the size s for the flow k
m P, available paths for flow &
m L links with the link capacity ¢; for the link [
mz, = (Tp1, - ,Tkp,) ! is the rate allocation vector of flow k
m Routing matrix: R = (Ry, Ry, -+, Rk)
10 00
% 1 10 00
N jC Ri=|0 1} R=[10|
G 2 00 01
AT 00 10
Figure 14: A network with two Figure 15: Routing matrix.

users and five links.
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Network Utility Maximization (NUM)

m Common choices of U (||xk|1): fairness log(||zk|1) or delay
e We choose Ug([|lakll1) = Blog(l|zkll) — si/llzxlh

REATR

m Network Utility Maximization (NUM) problem:

max Y Up(|ll),
max SO Up(lal), e ;
k

— st. y<g

s.t. Rx <c,
x >0,
x >0,
y=Rx
where R = [Ry, Ry, --- , Rg] € REXK is the routing matrix
(sparse), T = [x1; 22 ; TK]
m Augmented Lagrangian:
K

P
Lp(@,y.2) = = Y _Us(lel1) — 2" (y — Rz) + S |ly — Ral3
k=1
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r-update

K
2 e argmin— Y Up(Jal) — (/) (/! = Re) + £y~ - Ra,
z k=1

m Hard to solve, because the components of x are coupled

m Linearize the quadratic term and add a proximal term:

K
2/ —argmin— Y Ur(llzelly) — (R &, @ = 27~) + Lo — /'
* k=1
=argmin— 3~ Uy(lail1) + G o 2/~ - ERTOE
z k=1

where &71 = y/~1 — RaJ 1—%
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r-update
m Separable for different source. For k-th source:

. _ i B
x;, = argmin —Uy(|lzxlh) + 5 llee — v 7|3,
T 2
s s . . 1
where /=1 = gi—1 4 ﬁRT(yj I Rai—1 — sz )

i1 i—1 j-1 i1 . .
m The elements of v = (v, 5 - ,vj Pk)T are in descending

order:
i/

asfm = max(0, V,Zl + (1), where pi'(y, = U,’f(z max (0, yigl + (),
i=1

g . . e -1 -1 j—1
i’ is the maximal index: Uy (3 ;— max(0,vy ;" —v3)) = —pvj

m (; can be found by solving
;i1
B1 s 1 Yimi¥y
pry  pKor? I
where r, = Zf:l(yljc;l + (k)
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r-update

10

b ¢
T————,
z 22

any real number

be>0

-20

Figure 16: An illustration of finding (.

We denote the mapping between V]z_l and xfg as

xl = C(v] )
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y-update

yj — argmjnBHy _ Rm]H% _ (zj_l)T(y . ij)'
y<e 2

The solution is
21

p

y = —Pge(c— Ra/ — )+ e,

where PRJLr is the Euclidean projection on
RE = {(z1, 22, ,2p)T |2 20, i=1,2,--- L}
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ADMM for NUM

mi +— Ck(l/i;_l),k =1,...,K,

. . zj_l
Yy _PRﬁ(C_ Rx’) — —) +c,
p

2 21 —yp(y — Ra),

v x4 BRT(yj ~ Rx) - ),
"

where « is the update coffecient of Lagrangian multiplier

Figure 17: Data flow graph of ADMM, where z°,4°, 2° are fixed initial
values, s is the input
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ADMM-Net1

xl — C(vl ) k=1,...,K,
Yy _PRi(ij —0o2 4 t) +

2l i1 —'y(yj — Ra:j) o,

Vil + PWHT(yf — Rad — 0 & 29),
m

\

where © = {W7 o7 tI }}F:l are the trainable weights

-1

zJ

S, =

2) il _n’,(yj — Ra?) %Yo

A 4

Y« —Ppr(Ra) —0 02 +t) +c

/ \ v

—1

>

xl — Cwi ),k > vl + E(Wj)T(yJ —Rx) —0®27)

Figure 18: A typical layer of ADMM-Net.
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ADMM-Net2

m Consider the general cubic equation

b c
x3+a$2—bx—c:0<:>x—f——2:—a,
r

where b,c > 0

-10

b e
v be>0
v a?

—— any real number

-20

m Fixing b, ¢, denote the only positive root as r(a). As illustrated,

have r(a) — 0, as a — +o0, r(a) - —a, as a - —o0
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Approximation of Cy(+)
m We use a single branch of the rotated hyperbola to approximate it

[(a+mg) + (y + )| (y + 1) = Mg
a+ my)?

=A(a;mp, g, A\p) =y = \/( 1

+ Ak —
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ADMM-Net2

acfg <—A(Vi_1;)\k,mk,nk),k:: 1,...,K,
yl —PRJLr(Ra:j —o@2 4+ t) e,
2 27— y(y! — RxV) 0 o,

Vo xd + B(Wj)T(yj —~Rx! —0 0 27),
0

\

where © = {W7 o7, tj};‘-F:1 U { Ak, M, nk}le are the trainable weights.
(8, {W7, 07, tT}]T;I1 U { Ak, Mg, nk}szl) is the output of ADMM-Net2
at j-th layer
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Numerical Results

Table 2: cLASSIC ADMM vS DEEP UNROLLING ADMM IN SMALL EXAMPLE.

method loss obj delay | fairness | load | iteration/layers

ADMM 0 -0.619 | 1.944 | 2.563 1.00 3207
ADMM-Net1 | 0.026 | -2.389 | 0.298 | 2.687 | 31.45 1
ADMM-Net2 | 0.072 | 0.645 | 3.230 | 2.585 1.00 1
ADMM-Net1 | 0.022 | -2.358 | 0.328 | 2.686 | 35.73 3
ADMM-Net2 | 0.074 | 0.589 | 3.179 | 2.590 1.05 3

Table 3: cLAssIC ADMM vS DEEP UNROLLING ADMM IN LARGE EXAMPLE.

method loss obj delay | fairness | load | iteration/layers

ADMM 0 -183.355 | 4.377 | 187.732 | 1.00 20000
ADMM-Netl | 0.152 | -185.756 | 5.218 | 190.802 | 3.344 2
ADMM-Net2 | 0.249 | -164.463 | 24.378 | 188.840 | 1.01 2
ADMM-Net1 | 0.128 | -185.920 | 4.898 | 190.818 | 3.573 3
ADMM-Net2 | 0.248 | -164.400 | 24.286 | 188.891 | 1.01 3
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ADMM-Net2 as Warm-start

m ADMM-Net gives a fast approximate solution

m If we want to get a precise result, ADMM-Net becomes untrainable
m A natural idea is using ADMM-Net as warm-start

—— ADMM
~——— Mixed ADMMNet

0 500 1000 1500 2000 2500 3000 3500 1000
Iteration Times
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